当前位置: 首页 > news >正文

学生考试作弊检测系统 yolov8

学生考试作弊检测系统采用yolov8网络模型人工智能技术,学生考试作弊检测系统过在考场中安装监控设备,对学生的作弊行为进行实时监测。当学生出现作弊行为时,学生考试作弊检测系统将自动识别并记录信息。YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了。Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free。Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)。Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度。

从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。下面将按照模型结构设计、Loss 计算、训练数据增强、训练策略和模型推理过程共 5 个部分详细介绍 YOLOv8 的各种改进,实例分割部分暂时不进行描述。现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。


 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

相关文章:

学生考试作弊检测系统 yolov8

学生考试作弊检测系统采用yolov8网络模型人工智能技术,学生考试作弊检测系统过在考场中安装监控设备,对学生的作弊行为进行实时监测。当学生出现作弊行为时,学生考试作弊检测系统将自动识别并记录信息。YOLOv8 算法的核心特性和改动可以归结为…...

【基于容器的部署、扩展和管理】 3.2 基于容器的应用程序部署和升级

往期回顾: 第一章:【云原生概念和技术】 第二章:【容器化应用程序设计和开发】 第三章:【3.1 容器编排系统和Kubernetes集群的构建】 3.2 基于容器的应用程序部署和升级 3.2 基于容器的应用程序部署和升级 3.2 基于容器的应用程…...

Jmeter 实现 grpc服务 压测

一、Jmeter安装与配置 网上有很多安装与配置文章,在此不做赘述 二、Jmeter gRPC Request 插件安装 插件下载地址:JMeter Plugins :: JMeter-Plugins.org 将下载文件解压后放到Jmeter安装目录下 /lib/ext 然后在终端输入Jmeter即可打开 Jmeter GUI界面…...

深入源码分析RecyclerView缓存复用原理

文章目录 前言四级缓存 源码分析缓存一级缓存(mChangedScrap和mChangedScrap)二级缓存(mCachedViews)三级缓存(ViewCacheExtension)四级缓存(mRecyclerPool)缓存池mRecyclerPool结构…...

内网隧道代理技术(一)之内网隧道代理概述

内网隧道代理技术 内网转发 在渗透测试中,当我们获得了外网服务器(如web服务器,ftp服务器,mali服务器等等)的一定权限后发现这台服务器可以直接或者间接的访问内网。此时渗透测试进入后渗透阶段,一般情况…...

设计图形用户界面的原则

1) 一般性原则:界面要具有一致性、常用操作要有快捷方式、 提供简单的错误处理、对操作人员的重要操作要有信息反馈、操作可 逆、设计良好的联机帮助、合理划分并高效地使用显示屏、保证信息 显示方式与数据输入方式的协调一致 2) 颜色的使用:颜色…...

1:操作系统导论

1.1操作系统的定义 •Anoperatingsystemactsanintermediarybetweenuserofacomputerandthecomputer hardware. ◦ 操作系统充当计算机⽤⼾和计算机硬件之间的中介 •Thepurposeofanoperatingsystemistoprovideanenvironmentinwhichausercanexecute programsinaconvenientandeff…...

什么是微软的 Application Framework?

我是荔园微风,作为一名在IT界整整25年的老兵,今天来看一下什么是微软的 Application Framework? 到底什么是 Application Framework? 还没有真正掌握任何一套Application Framework的使用之前,就来研究这个真的不是很…...

一个关于宏定义的问题,我和ChatGPT、NewBing、Google Bard、文心一言 居然全军覆没?

文章目录 一、问题重述二、AI 解题2.1 ChatGPT2.2 NewBing2.3 Google Bard2.4 文心一言2.5 小结 一、问题重述 今天在问答模块回答了一道问题,要睡觉的时候,又去看了一眼,发现回答错了。 问题描述:下面的z的值是多少。 #define…...

【服务器数据恢复】断电导致RAID无法找到存储设备的数据恢复案例

服务器数据恢复环境: HP EVA存储,6块SAS硬盘组建的raid5磁盘阵列。上层操作系统是WINDOWS SERVER。该存储为公司内部文件服务器使用。 服务器故障&分析: 在遭遇两次意外断电后,设备重启时raid提示“无法找到存储设备”。管理员…...

Windows上不可或缺的5款宝藏软件,工作效率拉满!

职场小白与大牛的区别:小白需要耗费大半天琢磨的事情,而大牛可以只花5分钟就能处理。 “牛人”,即拥有过人之处,专业、经验、技术等等,学会灵活运用高效率的工具也是关键的一点。工具找得好,运用得快&#…...

链表内指定区间反转

题目: 将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转,要求时间复杂度 O(n),空间复杂度 O(1)。 例如: 给出的链表为 1→2→3→4→5→NULL,m2,n4 返回 1→4→3→2→5→NULL 数据范围&#xff…...

Vue中如何进行地图展示与交互(如百度地图、高德地图)?

Vue中如何进行地图展示与交互 随着移动互联网的普及,地图应用已经成为人们生活中不可或缺的一部分。在Vue.js中,我们可以使用第三方地图库(如百度地图、高德地图)来实现地图的展示和交互。本文将介绍如何在Vue.js中使用百度地图和…...

uni-app组件概述

1、组件 1.1、组件的含义 组件是视图层的基本组成单元。 组件是一个单独且可复用的功能模块的封装。 组件&#xff0c;包括&#xff1a;以组件名称为标记的开始标签和结束标签、组件内容、组件属性、组件属性值。 <component-name>是开始标签&#xff0c;</compon…...

什么是防火墙?它有什么作用?

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者会持续更新网络知识和python基础知识&#xff0c;期待你的关注 目录 一、什么是防火墙 二、防火墙的分类 1、软件防火墙 2、硬件防火墙 三、防火墙的作用 1、防止病毒 2、防止访问不安全内容 3、阻…...

基础工程(cubeide串口调试,printf实现,延时函数)

0.基础工程&#xff08;cubeide串口调试&#xff0c;printf实现&#xff0c;延时函数&#xff09; 文章目录 0.基础工程&#xff08;cubeide串口调试&#xff0c;printf实现&#xff0c;延时函数&#xff09;外部时钟源CLOCK(RCC)系统时钟SYS与DEBUG设置UART串口设置cubeide设置…...

大厂设计师都在用的9个灵感工具

每一件伟大的设计作品都离不开设计师灵感的爆发。设计师有很多灵感来源&#xff0c;比如精美的摄影图片、酷炫的网站设计、APP的特色功能、友好的用户体验动画&#xff0c;或者一篇文章。 设计师每天都需要收集灵感&#xff0c;把灵感收集当成日常生活。在这篇文章中&#xff…...

安全实现SpringBoot配置文件自动加解密

需求背景 应用程序开发的时候&#xff0c;往往会存在一些敏感的配置属性 数据库账号、密码第三方服务账号密码内置加密密码其他的敏感配置 对于安全性要求比较高的公司&#xff0c;往往不允许敏感配置以明文的方式出现。 通常做法是对这些敏感配置进行加密&#xff0c;然后在…...

数据结构--队列2--双端队列--java双端队列

介绍 双端队列&#xff0c;和前面学的队列和栈的区别在于双端队列2端都可以进行增删&#xff0c;其他2个都是只能一端可以增/删。 实现 链表 因为2端都需要可以操作所以我们使用双向链表 我们也需要一共头节点 所以节点设置 static class Node<E>{E value;Node<E…...

网络安全:信息收集专总结【社会工程学】

前言 俗话说“渗透的本质也就是信息收集”&#xff0c;信息收集的深度&#xff0c;直接关系到渗透测试的成败&#xff0c;打好信息收集这一基础可以让测试者选择合适和准确的渗透测试攻击方式&#xff0c;缩短渗透测试的时间。 一、思维导图 二、GoogleHacking 1、介绍 利用…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...