当前位置: 首页 > news >正文

LOF(Local Outlier Factor)原理

文章目录

  • 1定义
  • 2 k近邻距离(k-distance of an object p)
  • 3 k近邻
  • 4 可达距离
  • 5 局部可达密度
  • 6 lof
  • 参考:

1定义

LOF(Local Outlier Factor)是一种描述异常值的方法。

2 k近邻距离(k-distance of an object p)

假设p是查询点,离p最近的第K个点为o,则点p的k近邻距离记为k−distance(o)k-distance(o)kdistance(o),一般情况下可以认为k−distance(o)k-distance(o)kdistance(o)等于po之间的距离d(p,o)d(p,o)d(p,o)

3 k近邻

假设p是查询点,距离小于k近邻距离的点,都属于点p的k近邻,由集合Nk−distance(p)(p)N_{k-distance(p)}(p)Nkdistance(p)(p)表示,简记为Nk(p)N_k(p)Nk(p)
如果对k近邻算法很熟悉的话,以上两个定义都是很自然而然的定义。

4 可达距离

假设p是查询点,o是p的第k个近邻点,则定义p的可达距离:
reach-distk(p,o)=max⁡{k−distance(o),d(p,o)}\text{reach-dist}_k(p, o) = \max \left\{k-distance(o), d(p, o)\right\}reach-distk(p,o)=max{kdistance(o),d(p,o)}
值得注意的是:k−distance(o)k-distance(o)kdistance(o)是第k个近邻点o的k近邻距离,不是查询点p的k近邻距离(网上博客很多都是错误的)。因此通俗的讲:
对于查询点p而言,假设其第k个近邻点为o,则p的可达距离为o到o的第k个近邻点距离和po的最大值。

5 局部可达密度

假设p是查询点,o是p的近邻点集合N中的任一点,则定义p的可达密度:
lrd⁡k⁡(p)=(1/∑o∈Nk⁡(p)reach-dist k (p,o)∣Nk (p)∣)\operatorname{lrd}_{\operatorname{k}}(p)=\left( 1 / \frac{\underset{o \in N_{\operatorname{k}}(p)}{\sum} \text { reach-dist }_{\text {k }}(p, o)}{\left|N_{\text {k }}(p)\right|}\right) lrdk(p)=1/N(p)oNk(p) reach-dist (p,o)
局部可达密度等于p的所有k近邻点集合(从第一个近邻点到第k个近邻点)对应的可达距离平均值的倒数。∣Nk (p)∣\left|N_{\text {k }}(p)\right|N(p)这里应该表示查询点p的近邻数量,一般情况等于k

6 lof

假设p是查询点,o是p的近邻点集合N中的任一点,lof定义如下:
LOF⁡k⁡(p)=(∑o∈Nk⁡(p)lrdk⁡(o)lrdk⁡(p)∣Nk (p)∣)\operatorname{LOF}_{\operatorname{k}}(p)=\left( \frac{\underset{o \in N_{\operatorname{k}}(p)}{\sum} \frac{{lrd}_{\operatorname{k}}(o)} {{lrd}_{\operatorname{k}}(p)}}{\left|N_{\text {k }}(p)\right|}\right) LOFk(p)=N(p)oNk(p)lrdk(p)lrdk(o)
可以看出,lof计算不难,但要计算所有近邻点的局部可达密度,所以应该是比较耗时的。

参考:

lof原文:《LOF: Identifying Density-Based Local Outliers》
Charu C. Aggarwal《data mining》8.5.2.1 Local Outlier Factor (LOF)
sklearn 源码1
pdal源码1

相关文章:

LOF(Local Outlier Factor)原理

文章目录1定义2 k近邻距离(k-distance of an object p)3 k近邻4 可达距离5 局部可达密度6 lof参考:1定义 LOF(Local Outlier Factor)是一种描述异常值的方法。 2 k近邻距离(k-distance of an object p&am…...

[ vulhub漏洞复现篇 ] Drupal<7.32 Drupalgeddon SQL注入漏洞(CVE-2014-3704)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

Part 4 描述性统计分析(占比 10%)——下

文章目录【后续会持续更新CDA Level I&II备考相关内容,敬请期待】【考试大纲】【考试内容】【备考资料】【扩展知识】4、相关分析4.1、相关分析的描述——散点图4.2、相关分析的类型4.3、相关分析的度量4.3.1、协方差4.3.2、相关系数【后续会持续更新CDA Level …...

【一般人不会告诉你】比肩chatgtp的5款AI网站

话不多说,直接上连接 1. Dall-E: https://labs.openai.com/ 2. Codeformer: https://shangchenzhou.com/projects/Co... 3. Playground AI: https://playgroundai.com/ 4. Clip Drop: https://clipdrop.co/relight 5. Astria: https://www.strmr.com/examples …...

LA@相似方阵和对角化

文章目录相似方阵相似矩阵和特征值小结方阵相似对角化结论推论对角化方法归纳例方阵高次幂相似方阵 对角阵是矩阵中最简单的一类矩阵 对角阵相关的乘法运算是很高效的相似方阵是和对角阵相关的概念 设A和B是n阶方阵,如果存在n阶可逆方阵P,使得P−1APBP^{-1}APBP−1APB,则称方阵…...

存储类别、链接与内存管理(二)

0、前言概要 本篇来自于我的另外一篇博客存储类别、链接与内存管理(一)的续篇,主要分析了C语言中的不同存储类别、关键字以及使用的注意事项 1、自动变量 (1)属性 自动存储期、块作用域、无连接 (2&a…...

JavaScript 入门教程||javascript 简介||JavaScript 用法

javascript 简介JavaScript 是互联网上最流行的脚本语言,这门语言可用于 HTML 和 web,更可广泛用于服务器、PC、笔记本电脑、平板电脑和智能手机等设备。JavaScript 是脚本语言JavaScript 是一种轻量级的编程语言。JavaScript 是可插入 HTML 页面的编程代…...

新闻稿写作指南

当你想要传达一则新闻,写一份新闻稿是非常必要的。新闻稿的目的是让读者了解某个事件或信息,以及提供与之相关的背景信息和重要细节。以下是新闻稿的写作指南,帮助你写出一份清晰、简洁、有价值的新闻稿。1、选择一个有新闻价值的主题你的新闻…...

一文详解Redis持久化的两种方案

一文详解Redis持久化的两种方案1.RDB持久化2.RDB持久化原理3.AOF持久化4.RDB VS AOF1.RDB持久化 RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后&#xff0c…...

第六章 - 数据过滤where(where与and和or的组合用法)

第六章 - 数据过滤&#xff08;where的用法&#xff09;基本用法where的条件限制符等于号不等号! 或者<>小于<大于>小于等于<大于等于>between 的用法空值和非空值组合条件 and组合条件 orand 和 or 的计算次序in 和 not in基本用法 在查询语句中&#xff0…...

Oracle 定时任务例子

背景&#xff1a; 创建一个Oracle的定时任务&#xff0c;每天或指定时间 -----定义存储过程 create or replace procedure AAA_BBB as begin insert into AAA select * from BBB; commit; end; ----------------创建定时任务 declare xjobid number; begin DBMS_JOB.SUBM…...

Android常用9种自动化测试框架对比,Appium有哪些优势?

随着移动终端的普及&#xff0c;手机应用越来越多&#xff0c;也越来越重要。 App的回归测试用例数量也越来越多&#xff0c;全量回归也越来越消耗时间。移动 APP自动化测试 的难点移动 APP的UI自动化测试长久以来一直是一个难点&#xff0c;难点在于UI的”变”, 变化导致自动化…...

在vue2使用百度脑图的kityminder-core进行二次开发思维导图,给节点绑定数据后添加新的图标

需求说明&#xff1a;在给某个节点绑定文件数据后&#xff0c;用户并不能一眼看出哪个节点上绑定了数据&#xff0c;因此需要在绑定文件数据后给节点上加一个图标用于标识。 添加图标 1、在kityminder-core/src/module/file.js文件中添加代码 &#xff08;file.js文件如何添加…...

FPGA时序约束与分析 --- 时序约束概述

本系列参考文献 — FPGA时序与约束分析-吴厚航 FPGA从综合到实现需要的过程如下&#xff1a;synth_design -> opt_design -> place-design -> phys_opt_design -> route_design 1、时序约束的理解 2、时序约束的基本路径 3、时序约束的步骤 4、时序约束的主要方法…...

2022——寒假总结

文章目录背景报名摸索结果总结背景 大一上学期&#xff0c;刚上大学没有尽快适应&#xff0c;什么都没有学到。 因为疫情&#xff0c;所以平时的测试以及期末都是线上进行的&#xff0c;就没怎么认真学&#xff0c;网课直接划水。 我的生活与学习很不平衡&#xff0c;还热衷于参…...

C++11 Lambda表达式

文章首发公众号&#xff1a;iDoitnow 为什么引入Lambda Lambda表达式是一个可以内联在我们代码中的函数&#xff0c;我们可以将他传递给另外一个函数。在没有引入Lambda表达式之前&#xff0c;当我们遇到需要对多个数据&#xff0c;按照同一规则进行操作的时候&#xff0c;创建…...

冰湖灾害遥感监测评价与模拟分析

查看原文>>>mp.weixin.qq.com/s?__bizMzAxNzcxMzc5MQ&mid2247582638&idx1&sna22a1697b16a5edc2b74cb1ccf011689&chksm9be29cbeac9515a8227460103ae1b9f280af688eab0ce5a43448f9fa7c9cab820c389fcdc031&token10630879&langzh_CN#rd【专家简介…...

Highcharts.Chart

Highcharts 是一个使用javascript 脚本来生成图表的工具&#xff0c;和jfreechart 作用类似&#xff0c;都用来生成各种图表&#xff0c;并支持图片的导出和打印。 从官网 www.highcharts.com 上下载的压缩表中的example中有各种图表的例子。 要编写生成图表的例子建议从 文…...

遍历map的几种方法

#先往map加入几个数据 Map<Integer,String> mapnew HashMap<>(); map.put(1,"美好的周一"); map.put(2,"美好的周二"); map.put(3,"美好的周三"); 1 2 3 4 方法一&#xff1a;普通的foreach循环&#xff0c…...

RocketMQ源码分析之Broker概述与同步消息发送原理与高可用设计及思考

1、Broker概述 Broker 在 RocketMQ 架构中的角色&#xff0c;就是存储消息&#xff0c;核心任务就是持久化消息&#xff0c;生产者发送消息给 Broker,消费者从 Broker 消费消息&#xff0c;其物理部署架构图如下&#xff1a; 备注&#xff1a;以上摘录自官方 RocketMQ 设计文档…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...