当前位置: 首页 > news >正文

LOF(Local Outlier Factor)原理

文章目录

  • 1定义
  • 2 k近邻距离(k-distance of an object p)
  • 3 k近邻
  • 4 可达距离
  • 5 局部可达密度
  • 6 lof
  • 参考:

1定义

LOF(Local Outlier Factor)是一种描述异常值的方法。

2 k近邻距离(k-distance of an object p)

假设p是查询点,离p最近的第K个点为o,则点p的k近邻距离记为k−distance(o)k-distance(o)kdistance(o),一般情况下可以认为k−distance(o)k-distance(o)kdistance(o)等于po之间的距离d(p,o)d(p,o)d(p,o)

3 k近邻

假设p是查询点,距离小于k近邻距离的点,都属于点p的k近邻,由集合Nk−distance(p)(p)N_{k-distance(p)}(p)Nkdistance(p)(p)表示,简记为Nk(p)N_k(p)Nk(p)
如果对k近邻算法很熟悉的话,以上两个定义都是很自然而然的定义。

4 可达距离

假设p是查询点,o是p的第k个近邻点,则定义p的可达距离:
reach-distk(p,o)=max⁡{k−distance(o),d(p,o)}\text{reach-dist}_k(p, o) = \max \left\{k-distance(o), d(p, o)\right\}reach-distk(p,o)=max{kdistance(o),d(p,o)}
值得注意的是:k−distance(o)k-distance(o)kdistance(o)是第k个近邻点o的k近邻距离,不是查询点p的k近邻距离(网上博客很多都是错误的)。因此通俗的讲:
对于查询点p而言,假设其第k个近邻点为o,则p的可达距离为o到o的第k个近邻点距离和po的最大值。

5 局部可达密度

假设p是查询点,o是p的近邻点集合N中的任一点,则定义p的可达密度:
lrd⁡k⁡(p)=(1/∑o∈Nk⁡(p)reach-dist k (p,o)∣Nk (p)∣)\operatorname{lrd}_{\operatorname{k}}(p)=\left( 1 / \frac{\underset{o \in N_{\operatorname{k}}(p)}{\sum} \text { reach-dist }_{\text {k }}(p, o)}{\left|N_{\text {k }}(p)\right|}\right) lrdk(p)=1/N(p)oNk(p) reach-dist (p,o)
局部可达密度等于p的所有k近邻点集合(从第一个近邻点到第k个近邻点)对应的可达距离平均值的倒数。∣Nk (p)∣\left|N_{\text {k }}(p)\right|N(p)这里应该表示查询点p的近邻数量,一般情况等于k

6 lof

假设p是查询点,o是p的近邻点集合N中的任一点,lof定义如下:
LOF⁡k⁡(p)=(∑o∈Nk⁡(p)lrdk⁡(o)lrdk⁡(p)∣Nk (p)∣)\operatorname{LOF}_{\operatorname{k}}(p)=\left( \frac{\underset{o \in N_{\operatorname{k}}(p)}{\sum} \frac{{lrd}_{\operatorname{k}}(o)} {{lrd}_{\operatorname{k}}(p)}}{\left|N_{\text {k }}(p)\right|}\right) LOFk(p)=N(p)oNk(p)lrdk(p)lrdk(o)
可以看出,lof计算不难,但要计算所有近邻点的局部可达密度,所以应该是比较耗时的。

参考:

lof原文:《LOF: Identifying Density-Based Local Outliers》
Charu C. Aggarwal《data mining》8.5.2.1 Local Outlier Factor (LOF)
sklearn 源码1
pdal源码1

相关文章:

LOF(Local Outlier Factor)原理

文章目录1定义2 k近邻距离(k-distance of an object p)3 k近邻4 可达距离5 局部可达密度6 lof参考:1定义 LOF(Local Outlier Factor)是一种描述异常值的方法。 2 k近邻距离(k-distance of an object p&am…...

[ vulhub漏洞复现篇 ] Drupal<7.32 Drupalgeddon SQL注入漏洞(CVE-2014-3704)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

Part 4 描述性统计分析(占比 10%)——下

文章目录【后续会持续更新CDA Level I&II备考相关内容,敬请期待】【考试大纲】【考试内容】【备考资料】【扩展知识】4、相关分析4.1、相关分析的描述——散点图4.2、相关分析的类型4.3、相关分析的度量4.3.1、协方差4.3.2、相关系数【后续会持续更新CDA Level …...

【一般人不会告诉你】比肩chatgtp的5款AI网站

话不多说,直接上连接 1. Dall-E: https://labs.openai.com/ 2. Codeformer: https://shangchenzhou.com/projects/Co... 3. Playground AI: https://playgroundai.com/ 4. Clip Drop: https://clipdrop.co/relight 5. Astria: https://www.strmr.com/examples …...

LA@相似方阵和对角化

文章目录相似方阵相似矩阵和特征值小结方阵相似对角化结论推论对角化方法归纳例方阵高次幂相似方阵 对角阵是矩阵中最简单的一类矩阵 对角阵相关的乘法运算是很高效的相似方阵是和对角阵相关的概念 设A和B是n阶方阵,如果存在n阶可逆方阵P,使得P−1APBP^{-1}APBP−1APB,则称方阵…...

存储类别、链接与内存管理(二)

0、前言概要 本篇来自于我的另外一篇博客存储类别、链接与内存管理(一)的续篇,主要分析了C语言中的不同存储类别、关键字以及使用的注意事项 1、自动变量 (1)属性 自动存储期、块作用域、无连接 (2&a…...

JavaScript 入门教程||javascript 简介||JavaScript 用法

javascript 简介JavaScript 是互联网上最流行的脚本语言,这门语言可用于 HTML 和 web,更可广泛用于服务器、PC、笔记本电脑、平板电脑和智能手机等设备。JavaScript 是脚本语言JavaScript 是一种轻量级的编程语言。JavaScript 是可插入 HTML 页面的编程代…...

新闻稿写作指南

当你想要传达一则新闻,写一份新闻稿是非常必要的。新闻稿的目的是让读者了解某个事件或信息,以及提供与之相关的背景信息和重要细节。以下是新闻稿的写作指南,帮助你写出一份清晰、简洁、有价值的新闻稿。1、选择一个有新闻价值的主题你的新闻…...

一文详解Redis持久化的两种方案

一文详解Redis持久化的两种方案1.RDB持久化2.RDB持久化原理3.AOF持久化4.RDB VS AOF1.RDB持久化 RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后&#xff0c…...

第六章 - 数据过滤where(where与and和or的组合用法)

第六章 - 数据过滤&#xff08;where的用法&#xff09;基本用法where的条件限制符等于号不等号! 或者<>小于<大于>小于等于<大于等于>between 的用法空值和非空值组合条件 and组合条件 orand 和 or 的计算次序in 和 not in基本用法 在查询语句中&#xff0…...

Oracle 定时任务例子

背景&#xff1a; 创建一个Oracle的定时任务&#xff0c;每天或指定时间 -----定义存储过程 create or replace procedure AAA_BBB as begin insert into AAA select * from BBB; commit; end; ----------------创建定时任务 declare xjobid number; begin DBMS_JOB.SUBM…...

Android常用9种自动化测试框架对比,Appium有哪些优势?

随着移动终端的普及&#xff0c;手机应用越来越多&#xff0c;也越来越重要。 App的回归测试用例数量也越来越多&#xff0c;全量回归也越来越消耗时间。移动 APP自动化测试 的难点移动 APP的UI自动化测试长久以来一直是一个难点&#xff0c;难点在于UI的”变”, 变化导致自动化…...

在vue2使用百度脑图的kityminder-core进行二次开发思维导图,给节点绑定数据后添加新的图标

需求说明&#xff1a;在给某个节点绑定文件数据后&#xff0c;用户并不能一眼看出哪个节点上绑定了数据&#xff0c;因此需要在绑定文件数据后给节点上加一个图标用于标识。 添加图标 1、在kityminder-core/src/module/file.js文件中添加代码 &#xff08;file.js文件如何添加…...

FPGA时序约束与分析 --- 时序约束概述

本系列参考文献 — FPGA时序与约束分析-吴厚航 FPGA从综合到实现需要的过程如下&#xff1a;synth_design -> opt_design -> place-design -> phys_opt_design -> route_design 1、时序约束的理解 2、时序约束的基本路径 3、时序约束的步骤 4、时序约束的主要方法…...

2022——寒假总结

文章目录背景报名摸索结果总结背景 大一上学期&#xff0c;刚上大学没有尽快适应&#xff0c;什么都没有学到。 因为疫情&#xff0c;所以平时的测试以及期末都是线上进行的&#xff0c;就没怎么认真学&#xff0c;网课直接划水。 我的生活与学习很不平衡&#xff0c;还热衷于参…...

C++11 Lambda表达式

文章首发公众号&#xff1a;iDoitnow 为什么引入Lambda Lambda表达式是一个可以内联在我们代码中的函数&#xff0c;我们可以将他传递给另外一个函数。在没有引入Lambda表达式之前&#xff0c;当我们遇到需要对多个数据&#xff0c;按照同一规则进行操作的时候&#xff0c;创建…...

冰湖灾害遥感监测评价与模拟分析

查看原文>>>mp.weixin.qq.com/s?__bizMzAxNzcxMzc5MQ&mid2247582638&idx1&sna22a1697b16a5edc2b74cb1ccf011689&chksm9be29cbeac9515a8227460103ae1b9f280af688eab0ce5a43448f9fa7c9cab820c389fcdc031&token10630879&langzh_CN#rd【专家简介…...

Highcharts.Chart

Highcharts 是一个使用javascript 脚本来生成图表的工具&#xff0c;和jfreechart 作用类似&#xff0c;都用来生成各种图表&#xff0c;并支持图片的导出和打印。 从官网 www.highcharts.com 上下载的压缩表中的example中有各种图表的例子。 要编写生成图表的例子建议从 文…...

遍历map的几种方法

#先往map加入几个数据 Map<Integer,String> mapnew HashMap<>(); map.put(1,"美好的周一"); map.put(2,"美好的周二"); map.put(3,"美好的周三"); 1 2 3 4 方法一&#xff1a;普通的foreach循环&#xff0c…...

RocketMQ源码分析之Broker概述与同步消息发送原理与高可用设计及思考

1、Broker概述 Broker 在 RocketMQ 架构中的角色&#xff0c;就是存储消息&#xff0c;核心任务就是持久化消息&#xff0c;生产者发送消息给 Broker,消费者从 Broker 消费消息&#xff0c;其物理部署架构图如下&#xff1a; 备注&#xff1a;以上摘录自官方 RocketMQ 设计文档…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

表单设计器拖拽对象时添加属性

背景&#xff1a;因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...