超长上下文处理:基于Transformer上下文处理常见方法梳理
原文链接:芝士AI吃鱼
目前已经采用多种方法来增加Transformer的上下文长度,主要侧重于缓解注意力计算的二次复杂度。
例如,Transformer-XL通过缓存先前的上下文,并允许随着层数的增加线性扩展上下文。Longformer采用了一种注意力机制,使得token稀疏地关注远距离的token,从而降低计算复杂度。BigBird和LongT5也利用稀疏注意力机制来处理长序列。Hourglass通过对中间层的激活单元进行下采样,以减少计算量并实现更长的上下文。COLT5提出了条件计算的方法,以节省内存并实现更大的上下文。Memorizing Transformer使用k近邻查找来选择最相关的token,这也可以看作是减少注意力计算复杂度的一种方式。
我们的工作遵循了Memorizing Transformer的方法,旨在训练一个能够处理更长注意力上下文长度的模型(例如,通过缓解分心问题),从而具有更好的长上下文处理能力。
针对更长的上下文微调LLM。之前的工作,如RETRO和Memorizing Transformer,已经展示了一条有前途的道路,可以在不需要重新训练整个模型的情况下微调现有的LLM以添加新的功能。
最近,一些工作已经探索了通过微调LLaMA来增加其上下文长度。Landmark attention提出了一种将LLM的上下文压缩成landmarks的压缩方案,将LLaMA-7B的上下文长度增加到32K。
位置插值引入了对旋转位置编码方案的修改,使其能够微调32K上下文。与这项工作相比,我们的方法不依赖于位置编码,通过在内存中删除位置编码使我们能够推广到256k个token,尽管该模型只在长度为8K的序列上进行了训练,但依然产生了理论上无限的上下文长度。
对比学习。对比学习旨在通过比较正负样本来学习得到更好的表征。CLIP和SimCLR是两种在图像领域取得最先进性能的流行对比学习方法。
在对比预训练期间,负样本被保留在同一批次中,通过学习将它们与正样本区分开。在对比学习中扩展批次大小已被证明可以提高表征的质量,而且一些研究人员也发现语言建模过程中的嵌入空间很容易遭受退化,其中嵌入会被紧密地压缩在一个狭窄的锥体中,使得难以区分它们。TRIME提出了一种训练方法,旨在训练具有记忆增强功能的语言模型,它使用batch内的负样本来提高表征的质量。
注意力集中的Transformer(Focused Transformer,FoT)是Transformer模型的一个简单的即插即用扩展,既可以用于训练新模型,也可以用于微调现有的具有更长上下文的大模型。为此,FoT使用记忆注意力网络(memory attention layers)和跨批次训练。如图2所示,记忆注意力网络使模型能够在推理时从外部内存中检索信息,有效地扩展了上下文。跨批次训练过程使模型倾向于学习key-value的表征,这些表征可以很容易被记忆注意力网络使用。



相关文章:
超长上下文处理:基于Transformer上下文处理常见方法梳理
原文链接:芝士AI吃鱼 目前已经采用多种方法来增加Transformer的上下文长度,主要侧重于缓解注意力计算的二次复杂度。 例如,Transformer-XL通过缓存先前的上下文,并允许随着层数的增加线性扩展上下文。Longformer采用了一种注意力…...
ChatGPT爆火 但生成式AI并非全新产物
以ChatGPT、Midjourney 为代表的 AIGC 产品横空出世,在全球掀起新一轮的 AI 技术变革新浪潮。近二十年来,我们见证了从「机器学习」算法到「深度学习」,再到「基础模型」的发展。随着数据量大规模膨胀,可扩展的算力,再…...
深度学习循环神经网络
循环神经网络(Recurrent Neural Network,RNN)是一种广泛应用于序列数据、自然语言处理等领域的神经网络。与传统的前馈神经网络不同,循环神经网络的输入不仅取决于当前输入,还取决于之前的状态。这使得循环神经网络可以…...
如何规范的设计数据库表
前言对于后端开发同学来说,访问数据库,是代码中必不可少的一个环节。系统中收集到用户的核心数据,为了安全性,我们一般会存储到数据库,比如:mysql,oracle等。后端开发的日常工作,需要…...
【CSS】跳动文字
文章目录 效果展示代码实现 效果展示 代码实现 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>一颗不甘坠落的流星</title></head><style type"text/css">/* 遮罩盒子样式 */#mask {/* 设…...
arm海思启动udev的错误
近日在配置HI3531D的文件时发现错误 random: udevd: uninitialized urandom read (16 bytes read) random: udevd: uninitialized urandom read (16 bytes read)udev 是一个为你的计算机提供设备事件的 Linux 子系统。通俗来讲就是,当你的计算机上插入了像网卡、外…...
网络协议与攻击模拟-15-DNS协议
DNS 协议 1、了解域名结构 2、 DNS 查询过程 3、在 Windows server 上部署 DNS 4、分析流量 实施 DNS 欺骗 再分析 一、 DNS 1、概念 ● DNS ( domain name system )域名系统,作为将域名的 IP 地址的相互映射关系存放在一个分布式的数据库࿰…...
ChatGPT将改变教育,而不是摧毁它
01 学校和大学的反应迅速而果断 就在 OpenAI 于 2022 年 11月下旬发布ChatGPT 的几天后,该聊天机器人被广泛谴责为一种免费的论文写作、应试工具,它很容易在作业中作弊。 美国第二大学区洛杉矶联合大学立即阻止了OpenAI网站从其学校网络访问。其他人很…...
springboot在线考试
在线考试系统的开发运用java技术,MIS的总体思想,以及MYSQL等技术的支持下共同完成了该系统的开发,实现了在线考试管理的信息化,使用户体验到更优秀的在线考试管理,管理员管理操作将更加方便,实现目标....
C国演义 [第三章]
第三章 组合分析步骤递归函数的返回值和参数递归结束的条件单层逻辑 组合总和 III 组合 力扣链接 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1: 输入:n 4, k 2 输出࿱…...
数字化时代,企业的数据指标体系
在社会节奏越来越快,处理的信息量越来越大的今天,传统的经营管理模式已经适应不了当下的环境。而由经验、情感组成的业务调整以及决策能力不再能正确指导企业走在正确的方向上,所以数据就成为了企业新的业务优化调整和支撑企业高层管理进行决…...
三分钟了解 RocketMQ消息队列
文章目录 基本概念详细介绍主题(Topic)消息类型(MessageType)消息队列(MessageQueue)消息(Message)消息视图(MessageView)消息标签(MessageTag&am…...
golang redis第三方库github.com/go-redis/redis/v8实践
Redis基本数据类型代码示例# 这里示例使用 go-redis v8 ,不过 go-redis latest 是 v9 安装v8:go get github.com/go-redis/redis/v8 Redis 5 种基本数据类型: string 字符串类型;list列表类型;hash哈希表类型&#…...
校园网WiFi IPv6免流上网
ipv6的介绍 IPv6是国际协议的最新版本,用它来取代IPv4主要是为了解决IPv4网络地址枯竭的问题,也在其他很多方面对IPv4有所改进,比如网络的速度和安全性。 IPv4是一个32位的地址,随着用户的增加在2011年国家报道说IPv4的网络地址即…...
java 阿里云直播配置及推拉流地址获取
一、开通阿里云直播 首先进入阿里云直播产品主页:https://www.aliyun.com/product/live 。 点击下方的“立即开通”。 如果是还未注册的用户请按照页面提示进行完成注册并实名认证。 2、首次进入会提示开通服务,点击“开通服务”,然后选择计…...
PostgreSql 限制
参考:https://www.postgresql.org/docs/current/limits.html 项目上限说明单个数据库尺寸无限制null单个实例中数据库数量4,294,950,911null单个数据库中关系数量1,431,650,303null单个关系尺寸32 TB数据块为8k时单个表行数受4,294,967,295页的元组数量限制null单个…...
2023年java还是golang还是c#?
前言 我们可以先来看一下这三门语言各自的优劣 学习曲线:如果你是初学者或对编程相对陌生,Java可能是一个较好的选择。它有广泛的学习资源和社区支持,易于上手。Go也有简单易学的特点,但由于相对较年轻,相关的学习资…...
微服务、SpringBoot、SpringCloud 三者的区别
🎈 作者:Linux猿 🎈 简介:CSDN博客专家🏆,华为云享专家🏆,Linux、C/C、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊! &…...
2023-07-10 cmake管理的项目中使用vcpkg管理第三方库
一、安装 从Github上克隆Vcpkg仓库然后执行安装命令即可: git clone https://github.com/microsoft/vcpkg .\vcpkg\bootstrap-vcpkg.bat 安装自己需要的第三方库 .\vcpkg\vcpkg install [packages to install] 更多教学可参考: https://learn.microsoft…...
【剑指offer】学习计划day3
目录 一. 前言 二.替换空格 a.题目 b.题解分析 c.AC代码 三. 左旋转字符串 a.题目 b.题解分析 c.AC代码 一. 前言 本系列是针对Leetcode中剑指offer学习计划的记录与思路讲解。详情查看以下链接: 剑指offer-学习计划https://leetcode.cn/stud…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
