机器学习与深度学习——自定义函数进行线性回归模型
机器学习与深度学习——自定义函数进行线性回归模型
目的与要求
1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。
2、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行可视化展示数据区域。
步骤
1、先载入boston数据集 Load Iris data
2、分离训练集和设置测试集split train and test sets
3、对数据进行标准化处理Normalize the data
4、自定义损失函数
5、使用梯度下降算法训练线性回归模型
6、初始化模型参数
7、训练模型
8、对训练集和新数据进行预测
9、画出SSE和Epoch折线图
10、画出真实值和预测值的散点图
11、进行可视化
代码
1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。
#引入所需库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 读取数据
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
x = data[:,:2] # 只使用前两个特征进行线性回归
y = target.reshape(-1,1)#自定义函数进行线性回归
def compute_cost(X, y, theta):"""计算损失函数(平均误差平方和)"""m = len(y)predictions = X.dot(theta)cost = (1/(2*m)) * np.sum(np.square(predictions-y))return costdef gradient_descent(X, y, theta, learning_rate, num_epochs):"""使用梯度下降算法训练线性回归模型"""m = len(y)cost_history = np.zeros(num_epochs)theta_history = np.zeros((num_epochs, theta.shape[0]))for epoch in range(num_epochs):predictions = X.dot(theta)errors = predictions - ytheta = theta - (1/m) * learning_rate * (X.T.dot(errors))cost = compute_cost(X, y, theta)cost_history[epoch] = costtheta_history[epoch,:] = theta.Treturn theta, cost_history, theta_history#对输入特征进行标准化
mean_x = np.mean(x, axis=0) #求出每一列特征的平均值
std_x = np.std(x, axis=0) #求出每一列特征的标准差。
x = (x - mean_x) / std_x #将每一列特征进行标准化,即先将原始数据减去该列的平均值,再除以该列的标准差,这样就能得到均值为0,标准差为1的特征
X = np.hstack([np.ones((len(x),1)), x]) # 添加一列全为1的特征,表示截距项# 初始化模型参数
theta = np.zeros((X.shape[1],1))# 训练模型
learning_rate = 0.01
num_epochs = 1000
theta, cost_history, theta_history = gradient_descent(X, y, theta, learning_rate, num_epochs)# 对训练集进行预测
predictions = X.dot(theta)
predictions[:10]# 对新数据进行预处理
new_data = np.array([[0.01, 18]]) # 假设新数据是 CRIM=0.01,ZN=18
new_data = (new_data - mean_x) / std_x
new_X = np.hstack([np.ones((1,1)), new_data]) # 添加截距项# 使用训练出的模型参数进行预测
new_predictions = new_X.dot(theta)
new_predictions
print('预测的房价为:${:.7f}'.format(float(new_predictions)*1000))# 画出Epoch曲线图
#将每个特征在训练过程中更新的参数θ的变化情况绘制出来,可以看到不同特征在训练过程中的变化趋势
plt.figure()
plt.plot(range(num_epochs), theta_history[:, 0], label='theta0')
plt.plot(range(num_epochs), theta_history[:, 1], label='theta1')
plt.show()# 画出SSE和Epoch折线图
plt.figure(figsize=(10,5))
plt.plot(range(num_epochs), cost_history)
plt.xlabel('Epoch')
plt.ylabel('SSE')
plt.title('SSE vs. Epoch')
plt.show()# 画出预测值与真实值的比较图
plt.figure(figsize=(10,5))
plt.scatter(y, predictions)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('True Values vs. Predictions')
plt.show()# 画出数据二维可视化图
plt.figure(figsize=(10,5))
plt.scatter(x[:,0], y)
plt.xlabel('CRIM')
plt.ylabel('MEDV')
plt.title('CRIM vs. MEDV')
plt.show()# 画出数据三维可视化图
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x[:,0], x[:,1], y)
ax.set_xlabel('CRIM')
ax.set_ylabel('ZN')
ax.set_zlabel('MEDV')
ax.set_title('CRIM-ZN vs. MEDV')
plt.show()
1、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行可视化展示数据区域。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#载入数据
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
x = data[:,:2]#前2个维度
y = target
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 读取数据
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
x = data[:,:4] #
y = target.reshape(-1,1)#自定义函数进行线性回归
def compute_cost(X, y, theta):"""计算损失函数(平均误差平方和)"""m = len(y)predictions = X.dot(theta)cost = (1/(2*m)) * np.sum(np.square(predictions-y))return costdef gradient_descent(X, y, theta, learning_rate, num_epochs):"""使用梯度下降算法训练线性回归模型"""m = len(y)cost_history = np.zeros(num_epochs)theta_history = np.zeros((num_epochs, theta.shape[0]))for epoch in range(num_epochs):predictions = X.dot(theta)errors = predictions - ytheta = theta - (1/m) * learning_rate * (X.T.dot(errors))cost = compute_cost(X, y, theta)cost_history[epoch] = costtheta_history[epoch,:] = theta.Treturn theta, cost_history, theta_history#对输入特征进行标准化
mean_x = np.mean(x, axis=0) #求出每一列特征的平均值
std_x = np.std(x, axis=0) #求出每一列特征的标准差。
x = (x - mean_x) / std_x #将每一列特征进行标准化,即先将原始数据减去该列的平均值,再除以该列的标准差,这样就能得到均值为0,标准差为1的特征
X = np.hstack([np.ones((len(x),1)), x]) # 添加一列全为1的特征,表示截距项# 初始化模型参数
theta = np.zeros((X.shape[1],1))# 训练模型
learning_rate = 0.01
num_epochs = 1000
theta, cost_history, theta_history = gradient_descent(X, y, theta, learning_rate, num_epochs)
# 画出Epoch曲线图
#将每个特征在训练过程中更新的参数θ的变化情况绘制出来,可以看到不同特征在训练过程中的变化趋势
plt.figure()
plt.plot(range(num_epochs), theta_history[:, 0], label='theta0')
plt.plot(range(num_epochs), theta_history[:, 1], label='theta1')
plt.plot(range(num_epochs), theta_history[:, 2], label='theta2')
plt.plot(range(num_epochs), theta_history[:, 3], label='theta3')
plt.show()# 对训练集进行预测
predictions = X.dot(theta)
predictions[:10]# 对新数据进行预处理
new_data = np.array([[ 0.01,18,2.310,0]]) # 假设新数据是 CRIM=0.01,ZN=18,INDUS=2.310,CHAS=0
new_data = (new_data - mean_x) / std_x
new_X = np.hstack([np.ones((1,1)), new_data]) # 添加截距项# 使用训练出的模型参数进行预测
new_predictions = new_X.dot(theta)
new_predictions
print('预测的房价为:${:.7f}'.format(float(new_predictions)*1000))
# 画出SSE曲线图
plt.figure()
plt.plot(range(num_epochs), cost_history)
plt.xlabel('Epoch')
plt.ylabel('SSE')
plt.title('SSE vs. Epoch')
plt.show()
# 画出预测值与真实值的比较图
plt.figure(figsize=(10,5))
plt.scatter(y, predictions)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('True Values vs. Predictions')
plt.show()# 可视化前四个维度的数据
#前四个维度数据的可视化图像。其中横轴为第一个特征CRIM,纵轴为第二个特征ZN,纵轴为第三个特征INDUS,点的颜色为第四个特征的值。
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=x[:, 3], cmap='cool')
ax.set_xlabel('CRIM')
ax.set_ylabel('ZN')
ax.set_zlabel('INDUS')
plt.title('Boston Housing Data')
plt.show()
效果图
1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。






画出SSE(误差平方和)随Epoch(迭代次数)的变化曲线图,用来评估模型训练的效果。在每个Epoch,模型都会计算一次预测值并计算预测值与实际值之间的误差(即损失),然后通过梯度下降算法更新模型参数,使得下一次预测的误差更小。随着Epoch的增加,SSE的值会逐渐减小,直到收敛到一个最小值。




2、通过自定义函数进行线性回归模型对boston数据集前四个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行可视化展示数据区域。




画出SSE(误差平方和)随Epoch(迭代次数)的变化曲线图,用来评估模型训练的效果。在每个Epoch,模型都会计算一次预测值并计算预测值与实际值之间的误差(即损失),然后通过梯度下降算法更新模型参数,使得下一次预测的误差更小。随着Epoch的增加,SSE的值会逐渐减小,直到收敛到一个最小值。



使用梯度下降算法训练线性回归模型的基本思路是:先随机初始化模型参数θ,然后通过迭代调整参数θ,使得损失函数的值尽量小。模型训练完成后,我们可以用训练好的模型对新的数据进行预测。
相关文章:
机器学习与深度学习——自定义函数进行线性回归模型
机器学习与深度学习——自定义函数进行线性回归模型 目的与要求 1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过…...
大屏项目也不难
项目环境搭建 使用create-vue初始化项目 npm init vuelatest准备utils模块 业务背景:大屏项目属于后台项目的一个子项目,用户的token是共享的 后台项目 - token - cookie 大屏项目要以同样的方式把token获取到,然后拼接到axios的请求头中…...
c#webclient请求中经常出现的几种异常
WebClient是.NET Framework提供的用于HTTP请求的类,如果在使用WebClient时遇到异常,我们可以根据具体的异常类型进行处理。 以下是一些常见的WebClient异常及其处理方法: System.Net.WebException WebException通常是由于请求超时、网络连…...
设计模式-原型模式
目录 一、传统方式 二、原型模式 三、浅拷贝和深拷贝 克隆羊问题: 现在有一只羊tom,姓名为: tom,年龄为: 1,颜色为: 白色,请编写程序创建和tom羊属性完全相同的10只羊。 一、传统方式 public class Client {public static vo…...
sentinel介绍-分布式微服务流量控制
官网地址 https://sentinelguard.io/ 介绍 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自…...
基于Redisson的Redis结合布隆过滤器使用
一、场景 缓存穿透问题 一般情况下,先查询Redis缓存,如果Redis中没有,再查询MySQL。当某一时刻访问redis的大量key都在redis中不存在时,所有查询都要访问数据库,造成数据库压力顿时上升,这就是缓存穿透。…...
BrowserRouter刷新404解决方案
1、本地开发环境 在js脚本命令里加上 --history-api-fallback "scripts": {"serve": "webpack serve --config webpack.dev.js --history-api-fallback" }2、生产环境,可以修改 nglnx 配置: server {listen XXXX; //端口号…...
解决appium-doctor报opencv4nodejs cannot be found
一、下载cmake 在CMake官网下载:cmake-3.6.1-win64-x64.msi 二、安装cmake cmake安装过程 在安装时要选择勾选为所有用户添加CMake环境变量 三、检查cmake安装 重新管理员打开dos系统cmd命令提示符,输入cmake -version cmake -version四、安装opencv4no…...
安卓通过adb pull和adb push 手机与电脑之间传输文件
1.可以参考这篇文章 https://www.cnblogs.com/hhddcpp/p/4247923.html2.根据上面的文章,我做了如下修改 //设置/system为可读写: adb remount //复制手机中的文件到电脑中。需要在电脑中新建一个文件夹,我新建的文件夹为ce文件夹 adb pull …...
java常用的lambda表达式总结
一、概述 lambda表达式是JDK8中的一个新特性,对某些匿名内部类进行简化,是函数式编程; 二、基本格式 (参数列表)->{方法体代码} 三、Stream流 是jdk8中的新特性,将数据以流的形式进行操作 三、常用方法解析 3.1、准备工作 …...
分布式应用之zookeeper集群+消息队列Kafka
一、zookeeper集群的相关知识 1.zookeeper的概念 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能…...
GStreamer学习笔记(四)
Time management 仅当管道处于PLAYING状态时,可以刷新屏幕。如果不在PLAYING状态,什么都不做,因为大多数查询都会失败。 函数与知识点 GstClockTime 说明:所需的超时时间必须以GstClockTime的形式指定。即以纳秒(ns…...
DBeaver连接华为高斯数据库 DBeaver连接Gaussdb数据库 DBeaver connect Gaussdb
DBeaver连接华为高斯数据库 DBeaver连接Gaussdb数据库 DBeaver connect Gaussdb 一、概述 华为GaussDB出来已经有一段时间,最近工作中刚到Gauss数据库。作为coder,那么如何通过可视化工具来操作Gauss呢? 本文将记录使用免费、开源的DBeaver来…...
.net core 2.1 简单部署IIS运行
netcore的项目不像netFramework那么方便部署到iis还是要费点功夫的 比如我想把这个netcore2.1的项目部署到iis并运行: 按照步骤走: 一、确认自己的netcore环境 1、需要安装下面3个环境包(如果电脑已安装请忽略) 检查是否安装cmd命令:cmd&…...
提高视觉检测系统稳定性的隐藏办法——10G高速图像采集卡
提高视觉检测系统稳定性的隐藏办法——10G高速图像采集卡 目前,随着我国各方面配套基础设施建设的完善,企业技术、资金的积累,各行各业积极探索和大胆的尝试机器视觉技术,实现工业自动化、智能化。在机器视觉系统的使用过程中&am…...
注解方式实现数据库字段加密与解密
目录 前言实现步骤定义注解加密工具类定义mybatis拦截器 总结 前言 一些敏感信息存入数据需要进行加密处理,比如电话号码,身份证号码等,从数据库取出到前端展示时需要解密,如果分别在存入取出时去做处理,会很繁锁&…...
C\C++ 使用socket判断ip是否能连通
文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan 简介: 使用socket判断ip是否能联通 效果: 代码: #include <iostream> #include <cstdlib> #include <cstdio> #include &…...
数学建模-相关系数
excel基本操作:ctrl右,ctrl左,ctrlshift下/右,ctrlshift空格 题目里有数据,给出描述性统计是比较好的习惯 excel描述性统计:数据-数据分析-描述统计 MATLAB要做散点图C62个 SPSS可以直接画出两两之间的散…...
Ubuntu下安装、配置及重装CUDA教程
安装CUDA 前往Nvidia CUDA Tools官网选择对应的架构和版本下载CUDA 以如下架构和版本为例: 查看显卡驱动 nvidia-smi如果显卡驱动已经装了,那么在CUDA安装过程中不用再勾选安装driver 下载并安装CUDA wget https://developer.download.nvidia.co…...
自学网络安全(黑客)为什么火了?
网安专业从始至终都是需要学习的,大学是无法培养出合格的网安人才的。这就是为啥每年网安专业毕业生并不少,而真正从事网安岗位的人,寥寥无几的根本原因。 如果将来打算从事网安岗位,那么不断学习是你唯一的途径。 网络安全为什…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
