当前位置: 首页 > news >正文

机器学习小记-序

机器学习是人工智能的一个重要分支,根据学习任务的不同,可以将机器学习分为以下几类:

  1. 监督学习(Supervised Learning)

    • 应用场景:监督学习适用于已标记数据集的任务,其中每个样本都有相应的标签或输出。常见的应用场景包括分类和回归问题。例如,垃圾邮件分类、图像识别、房价预测等。
  2. 无监督学习(Unsupervised Learning)

    • 应用场景:无监督学习用于未标记数据集的任务,目标是从数据中发现模式、聚类和降维。应用场景包括聚类、异常检测、特征学习等。例如,用户分群、图像分割、数据降维等。
  3. 半监督学习(Semi-Supervised Learning)

    • 应用场景:半监督学习是介于监督学习和无监督学习之间的学习方式,它结合了标记和未标记数据来提高模型性能。应用场景包括利用未标记数据进行标记样本扩充,提高模型泛化能力。
  4. 强化学习(Reinforcement Learning)

    • 应用场景:强化学习是一种通过试错来学习决策和行为的方法。它在环境中执行动作,通过观察反馈信号来调整策略,从而最大化累积奖励。应用场景包括智能游戏玩家、自动驾驶汽车等。
  5. 迁移学习(Transfer Learning)

    • 应用场景:迁移学习利用已学习的知识来帮助新任务的学习。在目标任务数据较少时,从一个相关的源任务中迁移已学到的知识,以加快模型训练和提高性能。
  6. 生成式学习(Generative Learning)

    • 应用场景:生成式学习是一类生成新样本的学习方法,它可以用于生成文本、图像、音频等。应用场景包括图像生成、语言模型、音乐合成等。
  7. 增强学习(Meta Learning)

    • 应用场景:增强学习是一种用于学习学习算法或优化算法的学习方法。它可用于优化神经网络超参数、自动机器学习等。

每种类型的机器学习都有其独特的应用场景和优势。在实际应用中,通常需要根据任务的需求和数据的特点选择适当的学习方法。当涉及到不同类型的机器学习,以下是各类机器学习的一些示例和应用场景:

  1. 监督学习(Supervised Learning)

    • 分类:垃圾邮件分类、手写数字识别、疾病诊断、情感分析等。
    • 回归:房价预测、销售预测、股票价格预测等。
  2. 无监督学习(Unsupervised Learning)

    • 聚类:用户分群、图像分割、新闻主题提取等。
    • 降维:数据可视化、图像压缩、特征提取等。
  3. 半监督学习(Semi-Supervised Learning)

    • 图像分类:使用未标记图像进行训练,提高图像分类性能。
    • 文本分类:使用未标记的文本数据进行标记样本扩充,提高文本分类模型性能。
  4. 强化学习(Reinforcement Learning)

    • 游戏玩家:AlphaGo在围棋、AlphaZero在象棋等游戏中表现出色。
    • 自动驾驶:训练智能汽车通过强化学习来学习驾驶决策。
  5. 迁移学习(Transfer Learning)

    • 图像识别:使用在大规模图像数据集上预训练的卷积神经网络,然后在特定任务上进行微调。
    • 自然语言处理:使用预训练的语言模型进行文本分类、命名实体识别等任务。
  6. 生成式学习(Generative Learning)

    • 图像生成:GANs用于生成逼真的图像样本,如人脸生成、艺术图像创作等。
    • 语言模型:使用RNN或Transformer进行文本生成、机器翻译等任务。
  7. 增强学习(Meta Learning)

    • 超参数优化:使用增强学习来优化神经网络的超参数选择,以提高模型性能。
    • 自动机器学习:自动选择合适的学习算法、特征工程、模型架构等。

这些示例展示了不同类型的机器学习在各种实际应用中的广泛用途。机器学习技术在许多领域都取得了显著的进展,并持续推动着人工智能的发展。

几种经典算法的比较

算法优点缺点应用场景技术原理步骤
SVM1. 适用于高维数据和特征较少的情况
2. 可有效处理非线性问题
3. 对于小样本数据集表现良好
4. 通过使用核函数可以处理非线性分类问题
1. 对于大规模数据集需要较长的训练时间
2. 需要仔细选择合适的核函数和参数
3. 对于噪声较多的数据敏感
图像分类、文本分类、生物信息学、金融分析等基于支持向量和间隔最大化的原理进行分类1. 数据预处理
2. 选择合适的核函数和参数
3. 训练SVM模型
4. 对新样本进行预测
决策树1. 直观且易于理解和解释
2. 可处理数值型和类别型数据
3. 对缺失值和异常值有较好的容忍度
4. 可用于分类和回归问题
1. 容易出现过拟合问题
2. 对输入数据的变化较敏感
3. 生成的树可能较复杂
医学诊断、金融风险评估、客户分类等根据特征选择最佳划分的标准构建决策树1. 数据预处理
2. 特征选择和树构建
3. 剪枝操作
4. 对新样本进行预测
朴素贝叶斯1. 算法简单、易于实现
2. 对大规模数据集有较好的可扩展性
3. 对缺失数据不敏感
1. 假设特征之间相互独立,可能导致模型过于简化
2. 对输入数据的分布假设限制较强
文本分类、垃圾邮件过滤、情感分析等基于贝叶斯定理和特征条件独立性的假设进行分类1. 数据预处理
2. 计算类别和特征的概率
3. 对新样本进行预测
聚类1. 无需标记的数据集可以进行分组
2. 可发现数据内在的结构和模式
3. 对异常值具有较好的容忍度
1. 需要选择合适的距离度量和聚类算法
2. 对初始聚类中心的选择敏感
3. 结果可能受到数据噪声的影响
市场细分、图像分割、推荐系统等根据数据间的相似性将样本划分为不同的聚类1. 数据预处理
2. 选择合适的距离度量和聚类算法
3. 初始化聚类中心
4. 迭代更新聚类中心和样本分类
5. 输出聚类结果

相关文章:

机器学习小记-序

机器学习是人工智能的一个重要分支,根据学习任务的不同,可以将机器学习分为以下几类: 监督学习(Supervised Learning): 应用场景:监督学习适用于已标记数据集的任务,其中每个样本都有…...

IP基础知识总结

IP他负责的是把IP数据包在不同网络间传送,这是网络设计相关的,与操作系统没有关系。所以这部分知识,不是网络的重点。IP和路由交换技术联系紧密。但是要作为基本知识点记住。 一、基本概念 网络层作用:实现主机与主机之间通信。 …...

Java设计模式-单例模式

单例模式 1.单例模式含义 单例模式就是保证一个类仅有一个实例,并提供一个访问它的全局访问点。 其实单例模式很好理解,当我们new一个对象实例的时候,这个对象会被放到一个内存中,当我们再次new同一个对象的实例的时候&#xf…...

小程序----配置原生内置编译插件支持sass

修改project.config.json配置文件 在 project.config.json 文件中,修改setting 下的 useCompilerPlugins 字段为 ["sass"], 即可开启工具内置的 sass 编译插件。 目前支持三个编译插件:typescript、less、sass 修改之后可以将原.w…...

GitLab 删除项目

1.点击头像 2.点击Profile 3.选择要删除的项目点进去 4.settings-general-Advances-expand 5.然后在弹出框中输入你要删除的项目名称即可...

Mac m1 下eclipse下载及jdk环境变量配置

一、安装eclipse 1、下载eclipse Eclipse downloads - Select a mirror | The Eclipse Foundation 此版本为m1芯片适用版本 2、下载后下一步安装即可 安装成功后,可以看到图标: 二、安装jdk 1、下载jdk 下载此版本即可,下载完成之后一直…...

Java中List与数组之间的相互转换

一、List列表与对象数组 List列表中存储对象&#xff0c;如List<Integer>、List<String>、List<Person>&#xff0c;对象数组中同样存储相应的对象&#xff0c;如Integer[]、String[]、Person[]&#xff0c;对象数组与对象List的转换可通过如下方式实现&…...

嵌入式_GD32看门狗配置

嵌入式_GD32独立看门狗配置与注意事项 文章目录 嵌入式_GD32独立看门狗配置与注意事项前言一、什么是独立看门狗定时器&#xff08;FWDGT&#xff09;二、独立看门狗定时器原理三、独立看门狗定时器配置过程与注意事项总结 前言 使用GD3单片机时&#xff0c;为了提供了更高的安…...

Python 中的 JSON 操作:简单、高效的数据交换格式

在现代的数据交换和存储中&#xff0c;JSON&#xff08;JavaScript Object Notation&#xff09;作为一种轻量级的数据交换格式&#xff0c;备受青睐。它不仅易于阅读和理解&#xff0c;还可以灵活地表达和存储高维数据。本文将介绍如何在 Python 中操作 JSON 文件&#xff0c;…...

IT行业面试攻略:技巧与心态的平衡

引言&#xff1a;在面试IT公司时&#xff0c;调整好心态是取得优秀表现的关键。面试心态直接影响着我们在面试中的自信程度和表现。面对这一挑战&#xff0c;我们需要学会积极自信、认识到紧张是正常的、进行充分准备以及以积极的心态去迎接面试。只有在拥有正确的心态下&#…...

【玩转Linux】标准io缓冲区的操作

(꒪ꇴ꒪ ),hello我是祐言博客主页&#xff1a;C语言基础,Linux基础,软件配置领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff01;送给读者的一句鸡汤&#x1f914;&#xff1a;集中起来的意志可以击穿顽石!作者水平很有限&#xff0c;如果发现错误&#x…...

28.JavaWeb-Elasticsearch

1.Elasticsearch概述 Elasticsearch 是一个分布式的全文检索引擎。采用Java语言开发&#xff0c;基于Apache协议的开源项目&#xff0c;具有实时搜索&#xff0c;稳定&#xff0c;可靠&#xff0c;快速的特点。 1.1 全文检索引擎 分为通用搜索引擎&#xff08;百度、谷歌&…...

Python Flask构建微信小程序订餐系统 (十)

🔥 编辑会员信息 🔥 编辑会员信息可以通过点击会员列表操作,也可以点击会员信息详情点击进行操作 🔥 修改编程会员信息列表布局 🔥 修改 web/templates/member/index.html 文件,添加跳转到编辑会员信息的页面 web/templates/member/set.html 🔥 创建用于会员…...

j2ee相关知识点

浏览器栏中&#xff0c;输入的是servlet的mapping映射&#xff0c;请求到servlet中去&#xff0c;jsp路径&#xff0c;会跳转到对应的页面 Servlet接口位于最顶端&#xff0c;GenericServlet实现了Servlet&#xff0c;HttpServlet继承了GenericServlet 浏览器中访问Servlet映…...

Shell脚本学习-eval内置命令

这个命令&#xff0c;平时接触不是很多&#xff0c;所以不知道是什么回事。 eval内置命令&#xff1a; 功能&#xff1a;当Shell程序执行到eval语句的时候&#xff0c;Shell读入参数args&#xff0c;并将它们组合成一个新的命令&#xff0c;然后执行。也就是重新运算求出参数的…...

word中将合并后的多行拆分为原先的行数

word中将已经合并的多行拆分为原先的行数&#xff0c;我们不用刻意去数应该是多少行&#xff0c; 只需将拆分的行数不断增加&#xff0c;word会默认最大增加到合并前的行数。...

网络知识点之-BGP协议

本文章收录至《网络》专栏&#xff0c;点击右上角专栏图标可访问本专栏&#xff01; 边界网关协议&#xff08;BGP&#xff09;是运行于 TCP 上的一种自治系统的路由协议。 BGP 是唯一一个用来处理像因特网大小的网络的协议&#xff0c;也是唯一能够妥善处理好不相关路由域间的…...

【mac系统】mac系统调整妙控鼠标速度

当下环境&#xff1a; mac系统版本&#xff0c;其他系统应该也可以&#xff0c;大家可以自行试下&#xff1a; 鼠标 mac妙控鼠标&#xff0c;型号A1657 问题描述&#xff1a; 通过mac系统自带的鼠标速度调节按钮&#xff0c;调到最大后还是感觉移动速度哦过慢 问题解决&…...

AI > 语音识别开源项目列举

名称所属开发机构使用场景优缺点技术特点占有率描述CMU Sphinx卡内基梅隆大学嵌入式设备、服务器应用优点&#xff1a;可用于嵌入式设备和服务器应用。 缺点&#xff1a;准确率相对较低&#xff0c;适用范围有限。- 支持多种语言模型和工具。- 适用于嵌入式设备和服务器应用。中…...

golang单元测试及mock总结

文章目录 一、前言1、单测的定位2、vscode中生成单测 二、构造测试case的注意事项1、项目初始化2、构造空interface{}3、构造结构体的time.Time类型4、构造json格式的test case 三、运行单测文件1、整体运行单测文件2、运行单个单测文件报错&#xff08;1&#xff09;command-l…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...