当前位置: 首页 > news >正文

Pytorch个人学习记录总结 08

目录

神经网络-搭建小实战和Sequential的使用

版本1——未用Sequential 

版本2——用Sequential


神经网络-搭建小实战和Sequential的使用

  1. torch.nn.Sequential的官方文档地址,模块将按照它们在构造函数中传递的顺序添加。
  2. 代码实现的是下图: 

版本1——未用Sequential 

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linearclass Model(nn.Module):def __init__(self):super(Model, self).__init__()# 3,32,32 ---> 32,32,32self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)# 32,32,32 ---> 32,16,16self.maxpool1 = MaxPool2d(kernel_size=2, stride=2)# 32,16,16 ---> 32,16,16self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)# 32,16,16 ---> 32,8,8self.maxpool2 = MaxPool2d(kernel_size=2, stride=2)# 32,8,8 ---> 64,8,8self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)# 64,8,8 ---> 64,4,4self.maxpool3 = MaxPool2d(kernel_size=2, stride=2)# 64,4,4 ---> 1024self.flatten = Flatten()  # 因为start_dim默认为1,所以可不再另外设置# 1024 ---> 64self.linear1 = Linear(1024, 64)# 64 ---> 10self.linear2 = Linear(64, 10)def forward(self, x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)x = self.linear1(x)x = self.linear2(x)return xmodel = Model()
print(model)input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

版本2——用Sequential

代码更简洁,而且会给每层自动从0开始编序。

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialclass Model(nn.Module):def __init__(self):super(Model, self).__init__()self.model = Sequential(Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):return self.model(x)model = Model()
print(model)input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

 在代码最末尾加上writer.add_gragh(model, input)就可看到模型计算图,可放大查看。

writer = SummaryWriter('./logs/Seq')
writer.add_graph(model, input)
writer.close()

 

 

 

相关文章:

Pytorch个人学习记录总结 08

目录 神经网络-搭建小实战和Sequential的使用 版本1——未用Sequential 版本2——用Sequential 神经网络-搭建小实战和Sequential的使用 torch.nn.Sequential的官方文档地址,模块将按照它们在构造函数中传递的顺序添加。代码实现的是下图: 版本1—…...

Ansible自动化运维学习——综合练习

目录 (一)练习一 1.新建一个role——app 2.创建文件 3.删除之前安装的httpd服务和apache用户 4.准备tasks任务 (1)创建组group.yml (2)创建用户user.yml (3)安装程序yum.yml (4)修改模板httpd.conf.j2 (5)编写templ.yml (6)编写start.yml (7)编写copyfile.yml (8…...

Java中正则表达式

一、概念 正则表达式,又称规则表达式。(英语:Regular Expression,在代码中常简写为regex、regexp或RE),计算机科学的一个概念。正则表达式通常被用来检索、替换那些符合某个模式(规则)的文本。在众多语言中…...

13 硬链接和软链接

13.1 硬链接和软链接的区别 硬链接:A---B,假设B是A的硬链接,那么只要存在一个,无论删除哪一个,文件都能访问得到。 软链接:类似于快捷方式,删除源文件,快捷方式就访问不了。 13.2 创…...

智能合约安全审计

智能合约安全审计的意义 智能合约审计用于整个 DeFi 生态系统,通过对协议代码的深入审查,可以帮助解决识别错误、低效代码以及这些问题。智能合约具有不可篡改的特点,这使得审计成为任何区块链项目安全流程的关键部分。 代码审计对任何应用…...

矩阵置零(力扣)思维 JAVA

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 输入:matrix [[0,1,2,0],[3,4,5,2],[…...

centos制作openssh 9.3p2 rpm包

标题使用源码制作openssh 9.3p2 的rpm包 准备: 操作系统:CentOS Linux release 7.4.1708 (Core) #测试发现rpm包要在什么系统安装需要就需要在什么系统上制作 工具软件:rpm-build 源码文件:openssh-9.3p2.tar.gz x11-ssh-askpas…...

uni-app:切换页面刷新,返回上一页刷新(onShow钩子函数的使用)

切换页面刷新:通过onShow()便可实现 返回上一页通过uni.navigateBack({delta: 1});实现 以返回上一页刷新为例 从B页面返回上一页到A页面 在A页面写入方法refreshHandler() methods: { // 执行刷新逻辑refreshHandler() {uni.request({url: getApp().globalData.…...

全志F1C200S嵌入式驱动开发(调整cpu频率和dram频率)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 f1c200s默认的cpu频率是408M,默认的dram频率是156M。这两个数值,坦白说,都算不上特别高的频率。因为我们的晶振是24M输入,所以408/24=17,相当于整个cpu的频率只是晶振倍频了17…...

idea 设置了 vm options后无法启动

今天想扩展ideaj的JVM 设置了 vm options后无法启动 找了很久,重新卸载后安装也没有用 后面直接打开idea的bat文件 找到自己idea使用的.vmoptions文件,我是因为之前idea有缓存,一直用的我修改的文件,后面删了就可以启动了...

TPS54620RHLR是一款同步降压转换器

TPS54620RHLR是一款同步降压转换器,通过高效率和集成高压侧和低压侧MOSFET,为小型设计进行了优化。通过电流模式控制实现了进一步的空间节省,从而减少了元件数量,并通过选择高开关频率,减少了电感器的占地面积。输出电…...

主机漏洞利用演示MS17-010(永恒之蓝)

ms17-010危害:对被攻击方的电脑造成蓝屏! 申明:本篇文章的用意仅做学习使用 网络搭建环境: 软件:Vmware Workstation 17 攻击机:Kali 靶机环境:Windows 7 Nmap软件的基本功能: …...

2023年第六届河北省研究生数学建模竞赛题目B题Python求解代码

2023年第六届河北省研究生数学建模竞赛题目B题 本文文档与代码视频讲解与下载:【2023河北省研究生数学建模竞赛B题数据集和代码-哔哩哔哩】 https://b23.tv/weulGAO 光伏电池的异常检测与发电产能预测在碳达峰-碳中和的战略背景下,我国的光伏发电技术发…...

【三维点云处理】顶点、面片、邻接矩阵、邻接距离矩阵以及稀疏存储概念

文章目录 vts和faces基础知识vertices-节点(3是点的三维坐标)faces-面片(3是构成三角形面片的3个点) 邻接矩阵邻接距离矩阵(NN500)稀疏矩阵 vts和faces基础知识 vertices-节点(3是点的三维坐标…...

ansible 中的fetch模块的作用是什么

Ansible中的fetch模块用于从远程主机上复制文件到控制主机上。 fetch模块允许用户在远程主机上复制文件或目录,并将其下载到控制主机上的指定位置。它可以在执行Playbook期间执行此操作,也可以在Ad-Hoc命令中使用。 fetch模块的一些常见用途包括&#…...

Zabbix-6.4.4部署及监控配置

一、目标 对zabbix-6.4.4版本进行调研。了解并测试zabbix-6.4.4部署以及监控配置。 二、过程 前言:最新版本的zabbix-6.4.4的要求有所增加,配置要求如下: MySQL版本:8.0.X PHP版本:7.4.X libXML:2.6.1…...

解决 npm ERR! missing script: build 错误的方法

系列文章目录 文章目录 系列文章目录前言一、错误原因二、解决方法:三、注意事项:总结 前言 在使用 npm 进行前端项目构建时,有时会遇到错误信息 “npm ERR! missing script: build”,该错误通常发生在没有定义构建脚本时。本文将…...

json-server创建静态服务器2

上次写的 nodejs创建静态服务器 这次再来个v2.0 利用json-server很方便就可以实现。 vscode打开文件夹,文件夹所在终端: json-server.cmd --watch db.json 这里视频教程是没有上述命令标红的,但是会报错,具体不详&#xff0c…...

开源视频监控管理平台国标GB28181视频EasyCVR电子地图功能展示优化

视频监控综合管理平台EasyCVR可提供的视频能力包括:视频监控直播、云端录像、云存储、录像检索与回看、告警上报、平台级联、云台控制、语音对讲、电子地图、H.265自动转码等,也具备接入AI智能分析的能力。 视频汇聚平台EasyCVR可拓展性强、视频能力灵活…...

端口复用与重映射

端口复用和重映射 STM32F1有很多的内置外设,这些外设的外部引脚都是与GPIO复用的。也就是说,一个GPIO如果可以复用为内置外设的功能引脚,那么当这个GPIO作为内置外设使用的时候,就叫做复用。 大家都知道,MCU都有串口…...

龙虎榜——20250610

上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

Java入门学习详细版(一)

大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

若依登录用户名和密码加密

/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

学习 Hooks【Plan - June - Week 2】

一、React API React 提供了丰富的核心 API,用于创建组件、管理状态、处理副作用、优化性能等。本文档总结 React 常用的 API 方法和组件。 1. React 核心 API React.createElement(type, props, …children) 用于创建 React 元素,JSX 会被编译成该函数…...

docker容器互联

1.docker可以通过网路访问 2.docker允许映射容器内应用的服务端口到本地宿主主机 3.互联机制实现多个容器间通过容器名来快速访问 一 、端口映射实现容器访问 1.从外部访问容器应用 我们先把之前的删掉吧(如果不删的话,容器就提不起来,因…...