当前位置: 首页 > news >正文

基于ChatGPT聊天的零样本信息提取7.25

基于ChatGPT聊天的零样本信息提取

  • 摘要
  • 介绍
  • ChatIE
    • 用于零样本IE的多轮 QA
  • 实验
  • 总结

在这里插入图片描述

摘要

零样本信息提取(IE)旨在从未注释的文本中构建IE系统。由于很少涉及人类干预,因此具有挑战性。

零样本IE减少了数据标记所需的时间和工作量。最近对大型语言模型(LLMs,GFI-3,ChatGPT)的研究在零样本设置下显示出了良好的性能,从而激励我们研究基于提示的方法。

在这项工作中,我们询问是否可以通过直接提示LLM来构建强IE模型。
具体来说,我们将零样本IE任务转换为多轮问题解答问题,使用两阶段框架(ChatIE)。借助ChatGPT的强大功能,我们在三个IE任务上对我们的框架进行了广泛的评估:实体关系三重提取、命名实体识别和事件提取。

在两种语言的六个数据集上的经验结果表明,ChatIE在几种数据集上取得了令人印象深刻的性能,甚至超过了一些完整的模型。

介绍

信息提取旨在将非结构化文本中的结构化信息提取为结构化数据格式,包括实体关系提取(RE)、命名实体识别(NER)、事件提取(EE)等任务。这是自然语言处理中一项有趣的重要任务。处理大量的标签数据总是非常繁忙、劳动密集且耗时。

最近的工作在大规模预训练大语言模型上,例如GPT-3。
InstructGPT和ChatGPT表明,LLM即使不调整参数,仅使用少数示例作为说明,也能很好地执行各种下游任务。因此,这是一个时间问题:LLM提示在同一框架下执行零样本IE任务是否可行。这也是一个挑战,因为包含多个相关元素的结构化数据很容易通过一次预测来提取,尤其是对于像RE这样的复杂任务。以前的工作将这些复杂任务分解为不同的部分,并训练几个模块来解决每个部分。

基于这些线索,在本文中,我们转向ChatGPT,并假设ChatGPT天生具有在交互模式下存放统一正确零样本IE模型的能力。

更具体地说,我们提出了ChatIE,将零样本任务转化为一个多回合问题,并使用两阶段框架回答问题。

  1. 在第一阶段,我们的目的是找出一个句子中可能存在的相应元素类型。
  2. 在第二阶段,我们对来自阶段1的每个元素类型进行链式信息提取。

在这里插入图片描述
每个阶段都通过一个多回合的QA过程来实现。在每一轮,我们都会根据设计的模板和之前提取的信息构建提示,以询问ChatGPT。最后,我们将每个转弯的结果组成结构化数据。我们对IE、NER和EE进行了广泛的实验任务,包括两种语言的六个数据集:英语和汉语。

实验结果表明,当不使用ChatIE的普通ChatGPT无法用原始任务指令解决IE时,当IE任务分解为多个更简单、更容易的子任务时,我们提出的在ChatGPT上实例化的两阶段框架成功了。令人惊讶的是,ChatIE在几个数据集上取得了令人印象深刻的性能,甚至超过了一些全镜头模型。

ChatIE

用于零样本IE的多轮 QA

将IE框架分解成两个阶段,每个阶段都包含几轮QA,参考与ChatGPT的对话。

在第一阶段,我们的目标是在三个任务中分别找出句子中存在的实体、关系或事件的类型。这样,我们过滤掉不存在的元素类型,以减少搜索空间和假设的复杂性,有助于提取信息。

在第二阶段,我们在第一阶段提取的元素类型以及相应的任务特定方案的基础上进一步提取相关信息。

第一阶段:对于这个例子而言,这一步仅包含了一轮QA。为找到在句子中呈现的元素类型,我们首先利用任务特定的 TypeQues模板和元素类型列表 来构建问题。然后我们将问题和句子组合到ChatGPT中。为了便于提取答案,我们要求系统 以列表形式回复 。如果这些内容不包含任何元素类型,系统将生成一个带有NONE Token的响应。

第二阶段:该阶段通常包括多个QA轮次。在那之前,我们根据任务的方案设计了一系列特定的元素类型 ChainExtractionTemplate。ChainExtractionTemplates定义了一个问题链模板,链的长度通常为为1。但对于复杂的方案,如实体关系三重提取中的复数二元值提取,链的长度大于1。在这一点上,一个元素的提取可能依赖于另一个先前的元素,因此我们称之为链式模板(chained template)。
我们按照先前提取的元素类型的顺序以及ChainExtractionTemplates的理论执行多回合QA。为了生成问题,我们需要检索具有元素类型的模板,并在必要时填充相应的槽。然后我们访问ChatGPT并获得响应。最后,我们根据每一轮提取的元素组成结构化信息。同样,为了便于答案提取,我们要求系统以表格形式回复。如果没有提取任何内容,系统将生成一个带有NONE的令牌响应。

实验

总结

这是知识抽取和语言模型的结合,重点在于提出的基于ChatGPT的多轮QA框架——ChatIE,用于零样本信息提取。

ChatIE将每个回合的结果合成最终的结构化结果。

在这里插入图片描述

相关文章:

基于ChatGPT聊天的零样本信息提取7.25

基于ChatGPT聊天的零样本信息提取 摘要介绍ChatIE用于零样本IE的多轮 QA 实验总结 摘要 零样本信息提取(IE)旨在从未注释的文本中构建IE系统。由于很少涉及人类干预,因此具有挑战性。 零样本IE减少了数据标记所需的时间和工作量。最近对大型…...

Pytorch个人学习记录总结 08

目录 神经网络-搭建小实战和Sequential的使用 版本1——未用Sequential 版本2——用Sequential 神经网络-搭建小实战和Sequential的使用 torch.nn.Sequential的官方文档地址,模块将按照它们在构造函数中传递的顺序添加。代码实现的是下图: 版本1—…...

Ansible自动化运维学习——综合练习

目录 (一)练习一 1.新建一个role——app 2.创建文件 3.删除之前安装的httpd服务和apache用户 4.准备tasks任务 (1)创建组group.yml (2)创建用户user.yml (3)安装程序yum.yml (4)修改模板httpd.conf.j2 (5)编写templ.yml (6)编写start.yml (7)编写copyfile.yml (8…...

Java中正则表达式

一、概念 正则表达式,又称规则表达式。(英语:Regular Expression,在代码中常简写为regex、regexp或RE),计算机科学的一个概念。正则表达式通常被用来检索、替换那些符合某个模式(规则)的文本。在众多语言中…...

13 硬链接和软链接

13.1 硬链接和软链接的区别 硬链接:A---B,假设B是A的硬链接,那么只要存在一个,无论删除哪一个,文件都能访问得到。 软链接:类似于快捷方式,删除源文件,快捷方式就访问不了。 13.2 创…...

智能合约安全审计

智能合约安全审计的意义 智能合约审计用于整个 DeFi 生态系统,通过对协议代码的深入审查,可以帮助解决识别错误、低效代码以及这些问题。智能合约具有不可篡改的特点,这使得审计成为任何区块链项目安全流程的关键部分。 代码审计对任何应用…...

矩阵置零(力扣)思维 JAVA

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 输入:matrix [[0,1,2,0],[3,4,5,2],[…...

centos制作openssh 9.3p2 rpm包

标题使用源码制作openssh 9.3p2 的rpm包 准备: 操作系统:CentOS Linux release 7.4.1708 (Core) #测试发现rpm包要在什么系统安装需要就需要在什么系统上制作 工具软件:rpm-build 源码文件:openssh-9.3p2.tar.gz x11-ssh-askpas…...

uni-app:切换页面刷新,返回上一页刷新(onShow钩子函数的使用)

切换页面刷新:通过onShow()便可实现 返回上一页通过uni.navigateBack({delta: 1});实现 以返回上一页刷新为例 从B页面返回上一页到A页面 在A页面写入方法refreshHandler() methods: { // 执行刷新逻辑refreshHandler() {uni.request({url: getApp().globalData.…...

全志F1C200S嵌入式驱动开发(调整cpu频率和dram频率)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 f1c200s默认的cpu频率是408M,默认的dram频率是156M。这两个数值,坦白说,都算不上特别高的频率。因为我们的晶振是24M输入,所以408/24=17,相当于整个cpu的频率只是晶振倍频了17…...

idea 设置了 vm options后无法启动

今天想扩展ideaj的JVM 设置了 vm options后无法启动 找了很久,重新卸载后安装也没有用 后面直接打开idea的bat文件 找到自己idea使用的.vmoptions文件,我是因为之前idea有缓存,一直用的我修改的文件,后面删了就可以启动了...

TPS54620RHLR是一款同步降压转换器

TPS54620RHLR是一款同步降压转换器,通过高效率和集成高压侧和低压侧MOSFET,为小型设计进行了优化。通过电流模式控制实现了进一步的空间节省,从而减少了元件数量,并通过选择高开关频率,减少了电感器的占地面积。输出电…...

主机漏洞利用演示MS17-010(永恒之蓝)

ms17-010危害:对被攻击方的电脑造成蓝屏! 申明:本篇文章的用意仅做学习使用 网络搭建环境: 软件:Vmware Workstation 17 攻击机:Kali 靶机环境:Windows 7 Nmap软件的基本功能: …...

2023年第六届河北省研究生数学建模竞赛题目B题Python求解代码

2023年第六届河北省研究生数学建模竞赛题目B题 本文文档与代码视频讲解与下载:【2023河北省研究生数学建模竞赛B题数据集和代码-哔哩哔哩】 https://b23.tv/weulGAO 光伏电池的异常检测与发电产能预测在碳达峰-碳中和的战略背景下,我国的光伏发电技术发…...

【三维点云处理】顶点、面片、邻接矩阵、邻接距离矩阵以及稀疏存储概念

文章目录 vts和faces基础知识vertices-节点(3是点的三维坐标)faces-面片(3是构成三角形面片的3个点) 邻接矩阵邻接距离矩阵(NN500)稀疏矩阵 vts和faces基础知识 vertices-节点(3是点的三维坐标…...

ansible 中的fetch模块的作用是什么

Ansible中的fetch模块用于从远程主机上复制文件到控制主机上。 fetch模块允许用户在远程主机上复制文件或目录,并将其下载到控制主机上的指定位置。它可以在执行Playbook期间执行此操作,也可以在Ad-Hoc命令中使用。 fetch模块的一些常见用途包括&#…...

Zabbix-6.4.4部署及监控配置

一、目标 对zabbix-6.4.4版本进行调研。了解并测试zabbix-6.4.4部署以及监控配置。 二、过程 前言:最新版本的zabbix-6.4.4的要求有所增加,配置要求如下: MySQL版本:8.0.X PHP版本:7.4.X libXML:2.6.1…...

解决 npm ERR! missing script: build 错误的方法

系列文章目录 文章目录 系列文章目录前言一、错误原因二、解决方法:三、注意事项:总结 前言 在使用 npm 进行前端项目构建时,有时会遇到错误信息 “npm ERR! missing script: build”,该错误通常发生在没有定义构建脚本时。本文将…...

json-server创建静态服务器2

上次写的 nodejs创建静态服务器 这次再来个v2.0 利用json-server很方便就可以实现。 vscode打开文件夹,文件夹所在终端: json-server.cmd --watch db.json 这里视频教程是没有上述命令标红的,但是会报错,具体不详&#xff0c…...

开源视频监控管理平台国标GB28181视频EasyCVR电子地图功能展示优化

视频监控综合管理平台EasyCVR可提供的视频能力包括:视频监控直播、云端录像、云存储、录像检索与回看、告警上报、平台级联、云台控制、语音对讲、电子地图、H.265自动转码等,也具备接入AI智能分析的能力。 视频汇聚平台EasyCVR可拓展性强、视频能力灵活…...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...