当前位置: 首页 > news >正文

机器学习 深度学习编程笔记

sigmoid函数

def sigmoid(x):return 1.0 / (1+np.exp((-x)))

定义最小平方和损失函数

loss = torch.nn.MSELoss()

线性回归编程

在这里插入图片描述
如果不加噪音就成了正常的线性函数了,所以要加噪音。

torch.normal(0, 0.01, y.shape)

torch.normal(0, 0.01, y.shape)是一个用于生成服从正态分布的张量的函数。其中,0代表均值,0.01代表标准差,y.shape表示生成的张量的形状与y相同。具体而言,该函数会生成一个张量,其元素值是从均值为0、标准差为0.01的正态分布中随机采样得到的。

y.reshape((-1, 1))

y.reshape((-1, 1))是将张量y进行形状重塑的操作。通过该操作,可以将y转换为一个列向量,其中每个元素保持不变。

在PyTorch中,使用reshape函数对张量进行形状调整。参数(-1, 1)表示将y重塑为一个列向量,其中-1表示自动计算此维度的大小,而1表示列的维度大小为1。

y.reshape((-1, 1))将返回一个形状调整后的新张量,而原始的y张量保持不变。

手动实现线性回归

pip install d2l==0.17.6
import randomimport torch
from d2l import torch as d2ldef synthetic_data(w,b,num_examples):#  生成大小为(0,1),num_examples行,len(w)列的数据x , 此处是(1000,2)X = torch.normal(0,1,(num_examples,len(w)))# y = X*w + by = torch.matmul(X,w) + b# y 加上噪音y += torch.normal(0,0.01,y.shape)return X,y.reshape((-1,1))'''随机(小批量)梯度下降'''
def data_iter(batch_size,features,labels):num_examples = features.shape[0]'''生成0-999'''indices = list(range(num_examples))'''打乱0-999'''random.shuffle(indices)'''0-999中每次取一个batch_size'''for i in range(0,num_examples,batch_size):'''设置一个batch的索引'''batch_indices = torch.tensor(indices[i:min(i+batch_size,num_examples)])yield features[batch_indices],labels[batch_indices]def plot_img(features,labels):# 创建一个画板d2l.set_figsize()# 画一个散点图 (numpy格式的x,y,散点的像素大小)d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1)# 展示图像d2l.plt.show()true_w = torch.tensor([2,-3.4])
true_b = 4.2
features,labels = synthetic_data(true_w,true_b,1000)# 画图显示特征和标签
# plot_img(features,labels)batch_size = 10
for X,y in data_iter(batch_size,features,labels):print(X,'\n',y)break# 初始化模型参数, w是个列,形状为两行1列,值符合0,0.01的分布
w = torch.normal(0,0.01,size=(2,1),requires_grad=True)
b = torch.zeros(1,requires_grad=True)# 定义线性函数
def linreg(X,w,b):return torch.matmul(X,w)+b# 定义损失函数
def squared_loss(y_hat,y):return (y_hat - y.reshape(y_hat.shape)) ** 2 /2# 定义优化函数
def sgd(params,lr,batch_size):'''小批量随机梯度下降'''with torch.no_grad():for param in params:'''参数 = 参数 - 1/batch_size * -学习率 * 梯度'''param -= lr * param.grad / batch_size'''一个参数一个梯度,该下一个参数了比如是w2,所以要梯度清零'''param.grad.zero_()# 开始训练,定义参数和网络
lr = 0.03
num_epochs = 10
net = linreg
loss = squared_lossfor epoch in range(num_epochs):for X,y in data_iter(batch_size,features,labels):y_hat = net(X,w,b)L = loss(y_hat,y)# 计算的是每个样本的损失,所以要求和L.sum().backward()# 更新参数sgd([w,b],lr,batch_size)with torch.no_grad():# w,b已经经过上面的更新函数更新过了,用更新后的w,b代入公式 计算损失train_L = loss(net(features,w,b),labels)print(f'epoch {epoch+1}, loss {float(train_L.mean()):f}')

相关文章:

机器学习 深度学习编程笔记

sigmoid函数 def sigmoid(x):return 1.0 / (1np.exp((-x)))定义最小平方和损失函数 loss torch.nn.MSELoss()线性回归编程 如果不加噪音就成了正常的线性函数了,所以要加噪音。 torch.normal(0, 0.01, y.shape)torch.normal(0, 0.01, y.shape)是一个用于生成服从…...

18.背景轮播

背景轮播 html部分 <div class"container"><div class"slide active" style"background-image: url(./static/20180529205331_yhGyf.jpeg);"></div><div class"slide " style"background-image: url(./s…...

论文代码学习—HiFi-GAN(2)——鉴别器discriminator代码

文章目录 引言正文鉴别器多周期鉴定器多尺度鉴定器问题 总结 引言 这里翻译了HiFi-GAN这篇论文的具体内容&#xff0c;具体链接。这篇文章还是学到了很多东西&#xff0c;从整体上说&#xff0c;学到了生成对抗网络的构建思路&#xff0c;包括生成器和鉴定器。细化到具体实现的…...

Linux Shell 脚本编程学习之【第3章 正则表达式 (第二部分) grep命令】

第3章 正则表达式 &#xff08;第二部分&#xff09; 4 grep命令4.1 基本用法4.2 参考命令4.2.1 双引号4.2.2 -c 输出匹配行数4.2.3 -h 或 -l 不显示或只显示文件名4.2.4 -s 不显示错误信息4.2.5 -r 递归显示本级目录及下级目录4.2.6 -w 匹配完整词 -x 匹配完整行4.2.7 -q 退出…...

大语言模型LLM

目录 一、语言模型的发展 语言模型&#xff08;Language Model&#xff0c;LM&#xff09;目标是建模自然语言的概率分布&#xff0c;具体目标是构建词序列w1,w2,...,wm的概率分布&#xff0c;即计算给定的词序列作为一个句子出现可能的大小P(w1w2...wm)。但联合概率P的参数量…...

自学网络安全(黑客)的误区

前言 网络安全入门到底是先学编程还是先学计算机基础&#xff1f;这是一个争议比较大的问题&#xff0c;有的人会建议先学编程&#xff0c;而有的人会建议先学计算机基础&#xff0c;其实这都是要学的。而且这些对学习网络安全来说非常重要。 一、网络安全学习的误区 1.不要…...

@Conditional

Conditional Conditional 是 spring framework 中提供的一个条件注解&#xff0c;&#xff0c;满足条件就注入&#xff0c;不满足就不注入ioc Condtional 需要和 Condition接口 一起用&#xff1a; 返回true注入&#xff0c;返回false不注入&#xff0c;&#xff0c; 里面有一…...

【Linux】网络基础之TCP协议

目录 &#x1f308;前言&#x1f338;1、基本概念&#x1f33a;2、TCP协议报文结构&#x1f368;2.1、源端口号和目的端口号&#x1f369;2.2、4位首部长度&#x1f36a;2.3、32位序号和确认序号&#xff08;重点&#xff09;&#x1f36b;2.4、16位窗口大小&#x1f36c;2.5、…...

Java设计模式之装饰器(Decorator)模式

装饰器&#xff08;Decorator&#xff09;设计模式允许动态地将新功能添加到对象中&#xff0c;同时又不改变其结构。 什么是装饰器模式 装饰器&#xff08;Decorator&#xff09;模式通过将对象进行包装&#xff0c;以扩展其功能&#xff0c;而不需要修改其原始类。装饰器模…...

element ui树组件render-content 树节点的内容区的渲染另一种方式

直接上代码吧,不用h的写法。 <el-tree :data"data" node-key"id" default-expand-all :expand-on-click-node"false" :props"defaultProps":render-content"renderContentTree" node-click"handleNodeClick"&g…...

html a标签换行显示

文章目录 用css display属性不用css&#xff0c;可以用<br>标签换行示例 用css display属性 可以使用CSS的display属性来实现多个a标签每行显示一个。 HTML代码&#xff1a; <div class"link-container"><a href"#">Link 1</a>…...

关于Redis-存Long取Integer类型转换错误的问题

背景 最近遇到了两个Redis相关的问题&#xff0c;趁着清明假期&#xff0c;梳理整理。 1.存入Long类型对象&#xff0c;在代码中使用Long类型接收&#xff0c;结果报类型转换错误。 2.String对象的反序列化问题&#xff0c;直接在Redis服务器上新增一个key-value&#xff0c…...

设计模式一:简单工厂模式(Simple Factory Pattern)

简单工厂模式&#xff08;Simple Factory Pattern&#xff09;是一种创建型设计模式&#xff0c;它提供了一个通用的接口来创建各种不同类型的对象&#xff0c;而无需直接暴露对象的创建逻辑给客户端。 简单工厂的三个重要角色&#xff1a; 工厂类&#xff08;Factory Class&…...

如何利用plotly和geopandas根据美国邮政编码(Zip-Code)绘制美国地图

对于我自己来说&#xff0c;该需求源自于分析Movielens-1m数据集的用户数据&#xff1a; UserID::Gender::Age::Occupation::Zip-code 1::F::1::10::48067 2::M::56::16::70072 3::M::25::15::55117 4::M::45::7::02460 5::M::25::20::55455 6::F::50::9::55117我希望根据Zip-…...

ceph集群搭建

文章目录 理论知识具体操作搭建ceph本地源yum源及ceph的安装配置NTP&#xff08;解决时间同步问题&#xff09;部署ceph自定义crush 理论知识 Ceph是一个分布式存储系统&#xff0c;并且提供了文件、对象、块存储功能。 Ceph集群中重要的守护进程有&#xff1a;Ceph OSD、Cep…...

前端密码加密 —— bcrypt、MD5、SHA-256、盐

&#x1f414; 前期回顾悄悄告诉你&#xff1a;前端如何获取本机IP&#xff0c;轻松一步开启网络探秘之旅_彩色之外的博客-CSDN博客前端获取 本机 IP 教程https://blog.csdn.net/m0_57904695/article/details/131855907?spm1001.2014.3001.5501 在前端密码加密方案中&#xff…...

汽车UDS诊断深度学习专栏

1.英文术语 英文术语翻译Diagnostic诊断Onboard Diagnostic 在线诊断 Offboard Diagnostic离线诊断Unified diagnostic service简称 UDS 2.缩写表 缩写解释ISO国际标准化组织UDSUnified diagnostic service&#xff0c;统一的诊断服务ECU电控单元DTC 诊断故障码 ISO14229UD…...

macOS 下安装brew、nvm

1、brew&#xff1a; /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" brew -v 查看版本 示例&#xff1a; 安装jdk brew search jdk 查询可用的jdk版本 brew install openjdk11 安装制定版本jdk 更换源&#xff1…...

【云原生】Kubernetes工作负载-StatefulSet

StatefulSet StatefulSet 是用来管理有状态应用的工作负载 API 对象 StatefulSet 用来管理某 Pod 集合的部署和扩缩&#xff0c; 并为这些 Pod 提供持久存储和持久标识符 和 Deployment 类似&#xff0c; StatefulSet 管理基于相同容器规约的一组 Pod。但和 Deployment 不同…...

Java:方法的重载

方法重载 为什么需要方法重载 在使用方法的过程中我们可能会遇到以下如同例子的情形&#xff1a; ​ ​ public class method1 {public static void main(String[] args) {int a1 10;int b1 20;double ret1 add(a1, b1);System.out.println("ret1 " ret1);do…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...