深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax
分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 机器学习中的数学——激活函数:Softmax函数
· 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax
· 深入浅出Pytorch函数——torch.nn.Softmax
将Softmax函数应用于沿dim
的所有切片,并将重新缩放它们,使元素位于 [ 0 , 1 ] [0, 1] [0,1]的范围内并和为1。
语法
torch.softmax(input, dim, *, dtype=None) -> Tensor
torch.nn.functional.softmax(input, dim=None, _stacklevel=3, dtype=None) -> Tensor
参数
input
:[Tensor
] 输入张量dim
:[int
] Softmax函数将沿着dim
轴计算,即沿dim
的每个切片的和为1dtype
:[可选,torch.dtype
] 想要返回张量的数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype
。这对于防止数据类型溢出非常有用。默认值为None
返回值
与input
具有相同形状且值在[0,1]范围内的Tensor
。
实例
>>> x = torch.randn(4, 5)
>>> torch.nn.functional.softmax(x, dim=0)
tensor([[0.4259, 0.5448, 0.1935, 0.3904, 0.1963],[0.1370, 0.1053, 0.1966, 0.2625, 0.4343],[0.0540, 0.2823, 0.5101, 0.2082, 0.0905],[0.3832, 0.0676, 0.0998, 0.1390, 0.2789]])>>> torch.nn.functional.softmax(x, dim=1)
tensor([[0.0728, 0.1720, 0.1233, 0.5541, 0.0779],[0.1139, 0.0667, 0.2677, 0.4361, 0.1156],[0.2576, 0.0811, 0.0671, 0.2975, 0.2968],[0.1874, 0.0358, 0.2240, 0.4470, 0.1057]])
函数实现
def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:r"""Applies a softmax function.Softmax is defined as::math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}`It is applied to all slices along dim, and will re-scale them so that the elementslie in the range `[0, 1]` and sum to 1.See :class:`~torch.nn.Softmax` for more details.Args:input (Tensor): inputdim (int): A dimension along which softmax will be computed.dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.If specified, the input tensor is casted to :attr:`dtype` before the operationis performed. This is useful for preventing data type overflows. Default: None... note::This function doesn't work directly with NLLLoss,which expects the Log to be computed between the Softmax and itself.Use log_softmax instead (it's faster and has better numerical properties)."""if has_torch_function_unary(input):return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)if dim is None:dim = _get_softmax_dim("softmax", input.dim(), _stacklevel)if dtype is None:ret = input.softmax(dim)else:ret = input.softmax(dim, dtype=dtype)return ret
相关文章:
深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 机器学习中的数学——激活函数:Softmax函数 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax 深入浅出Pytorch函数——torch.nn.Softmax 将Softmax函数应用于沿dim的…...

Vue2学习笔记
vue是根据数据来构建用户界面的一套框架 创建一个vue实例 <!-- 1.创建一个容器 2.引入vue.js开发版本(全局的) 3.创建实例对象 4.配置选项 > 完成渲染 --> <div id"app">{{ msg }} </div> <script srcvue.js><…...

Java 悲观锁 乐观锁
锁可以从不同的角都分类。其中乐观锁和悲观锁是一种分类方式 一、悲观锁、乐观锁定义 悲观锁就是我们常说到的锁。对于悲观锁来说,他总是认为每次访问共享资源时会发生冲突,所以必须每次数据操作加上锁,以保证临界区的程序同一时间只能有一个…...

优惠券秒杀(二)
库存超卖问题分析 库存超卖问题其本质就是多个线程操作共享数据产生的线程安全问题,即当一个线程在执行操作共享数据的多条代码的过程中,其他线程也参与了进来,导致了线程安全问题的产生。例如:线程1发送请求,查询库存…...

selenium的java方式打开IE浏览器
1.下载软件Selenium Driver 官方下载地址: https://www.selenium.dev/downloads/解压selenium-java-3.141.59.zip文件到java项目 seleniumDemo,并降解压的文件放入依赖中(1)双击项目的src打开项目结构,或右键-打开…...

分类评估指标
文章目录 1. 混淆矩阵2. Precision(精准率)3. Recall(召回率)4. F1-score5. ROC曲线和AUC指标5.1 ROC 曲线5.2 绘制 ROC 曲线5.3 AUC 值6. API介绍6.1 **分类评估报告api**6.2 **AUC计算API**练习-电信客户流失预测1. 数据集介绍2. 处理流程3. 案例实现4. 小结1. 混淆矩阵 …...

OpenCV:图像直方图计算
图像直方图为图像中像素强度的分布提供了有价值的见解。通过了解直方图,你可以获得有关图像对比度、亮度和整体色调分布的信息。这些知识对于图像增强、图像分割和特征提取等任务非常有用。 本文旨在为学习如何使用 OpenCV 执行图像直方图计算提供清晰且全面的指南。…...

用QFramework来重构 祖玛游戏
资料 Unity - 祖玛游戏 GitHub 说明 用QF一个场景就够了,在UIRoot下切换预制体达到面板切换。 但测试中当然要有一个直接跳到测试面板的 测试脚本,保留测试Scene(不然初学者也不知道怎么恢复测试Scene),所以全文按S…...
生活杂记-显示器尺寸
以下是常见显示器尺寸的对角线长度换算成厘米的结果(已经四舍五入到最接近的厘米数): 19英寸显示器 ≈ 48.26厘米21.5英寸显示器 ≈ 54.61厘米24英寸显示器 ≈ 60.96厘米27英寸显示器 ≈ 68.58厘米32英寸显示器 ≈ 81.28厘米34英寸显示器 ≈…...
在CSDN学Golang云原生(Kubernetes Pod无状态部署)
一,静态pod Kubernetes中的Pod是可以动态创建、销毁的,如果希望Pod只使用静态的IP地址而不是自动生成一个IP地址,那么就需要使用静态Pod。 静态Pod是在kubelet启动时通过指定文件夹路径来加载的。当kubelet检测到这些配置文件变化后&#x…...
@Bean的作用
Bean通常和Configuration注解一起使用 Bean可以用在方法上,方法返回的对象交给spring容器管理,和提供给其他程序组件使用 Bean是一个注解,用于将方法标记为Spring容器中的一个Bean。具体来说,Bean注解可以用于方法上,…...

【论文阅读22】Label prompt for multi-label text classification
论文相关 论文标题:Label prompt for multi-label text classification(基于提示学习的多标签文本分类) 发表时间:2023 领域:多标签文本分类 发表期刊:Applied Intelligence(SCI二区࿰…...
EasyExcel数据导出功能封装
起因: 最近需要用到excel导出功能,使用EasyExcel可以快速实现导出,又需要优雅的对EasyExcel进行封装,在实现自己的导出功能时又可以制定一定的规则,让其他同事方便使用,最近研究了下网上的常规写法,站在巨人的肩上重新添加了自己的思路,供大家参考,有任何问题请多指教…...

通过web.xml来配置servlet程序
IDEA 2022.3.3 tomcat-9.0.27 Java EE8 JDK-16 配置访问的虚拟路径 web.xml <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://xmlns.jcp.org/xml/ns/javaee"xmlns:xsi"http://www.w3.org/2001/XMLSchema-insta…...

umi 创建的项目中,如何配置多个环境变量
创建env.js 在config.js中配置 在页面中使用 env.js和config.js的目录顺序 package.json中的配置...

Mysql 5.7 连接数爆满 清理连接数
Mysql 5.7 连接数爆满 清理连接数 我在做项目的时候遇到了这个报错,然后搜了半天也没有在网上找到mysql清理连接数的方案,后面还是自己写了一个 打开MySQL命令行或客户端,并使用管理员权限登录到MySQL服务器。 我这里使用的是navicat 输入…...
HTTPS工作原理
先简述一下什么是HTTPS,HTTPS就是在HTTP的基础上增加了SSL/TLS来完成加密传输,以免敏感信息被第三方获取,所以很多银行网站或电子邮箱等等安全级别较高的服务都会采用HTTPS协议。 一、客户端发起HTTPS请求 这个没什么好说的,就是…...

十大基础算法
一、选择排序 过程简单描述: 首先,找到数组中最小的那个元素,其次,将它和数组的第一个元素交换位置(如果第一个元素就是最小元素那么它就和自己交换)。其次,在剩下的元素中找到最小的元素,将它与数组的第二…...

Java---第八章(字符串-----String,StringBuilder 和 StringBuffer)
Java---第八章 字符串String字符串的常用方法StringBuilder和StringBuffer常用方法 对比String 和StringBuilder 和 StringBuffer 字符串 String 特性: String 类位于java.lang包中,无需引入,可直接使用String 类是由final修饰的ÿ…...
k8s集群的部署
【1】安装docker systemctl enable docker所有节点均需要安装docker,并且使其开机自启,每个节点均部署镜像加速器 【2】配置k8s的yum文件 [rootk8s1 ~]# cd /etc/yum.repos.d/ [rootk8s1 yum.repos.d]# vim k8s.repo [rootk8s1 yum.repos.d]# cat k8s.repo [k8s…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...

Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...