Pytorch在cuda、AMD DirectML和AMD CPU下性能比较
一、测试环境
CUDA环境: i7-8550u + 16G DDR4 2133MHz + nVidia MX150 2GB
AMD DirectML环境: Ryzen 5 5600G + 32G DDR4 3200MHz + Vega7 4GB
AMD 纯CPU环境:Ryzen 5 5600G + 32G DDR4 3200MHz
其他硬件配置的硬盘、电源均一致。Pytorch版本为2.0.0,Python环境为3.7.11,Win10 LTSC。
二、测试代码
拟合一个100万点数的函数,并计算从神经网络被传入内存/显存开始,到计算结果出来,所耗费的时间。不含前面准备时间、出图时间。计算三次手动记录平均值。代码如下:
CUDA测试代码
# -*- coding: utf-8 -*-
# @Time : 19/12/9 16:38
# @Author : JL
# @File : pytorchTest.py
# @Software: PyCharmimport matplotlib.pyplot as plt
import torch
import timex = torch.unsqueeze(torch.linspace(-1, 1, 1000000), dim=1).cuda()
y = x.pow(2) + 0.3 * torch.rand(x.size()).cuda()net1 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
lossFunc = torch.nn.MSELoss()device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("当前使用的设备是:" + str(torch.cuda.get_device_name(torch.cuda.current_device())))
print("当前CUDA、CUDNN版本号分别为:"+str(torch.version.cuda)+"、"+str(torch.backends.cudnn.version()))
print("当前Pytorch版本号为:"+str(torch.__version__))startTime = time.perf_counter()net1.to(device)for t in range(100):prediction = net1(x)loss = lossFunc(prediction, y)optimizer.zero_grad()loss.backward()optimizer.step()print(loss.data.cpu().numpy())endTime = time.perf_counter()
delta = endTime-startTimeprint("Treat a net in %0.2f s." % delta)plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
plt.show()
DirectML、AMD CPU测试代码:
# -*- coding: utf-8 -*-
# @Time : 19/12/9 16:38
# @Author : JL
# @File : pytorchTest.py
# @Software: PyCharmimport matplotlib.pyplot as plt
import torch
import torch_directml
import timedml = torch_directml.device() # 如果使用DirectML,则分配到dml上
cpuML = torch.device("cpu") # 如果仅使用CPU,则选择分配到cupML上# 注意修改dml或cpuML
x = torch.unsqueeze(torch.linspace(-1, 1, 1000000), dim=1).to(dml)
y = x.pow(2) + 0.3 * torch.rand(x.size()).to(dml)net1 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
lossFunc = torch.nn.MSELoss()print("当前Pytorch版本号为:" + str(torch.__version__))startTime = time.perf_counter()net1.to(dml) # 注意修改dml或cpuMLfor t in range(100):prediction = net1(x)loss = lossFunc(prediction, y)optimizer.zero_grad()loss.backward()optimizer.step()print(loss.data.cpu().numpy())endTime = time.perf_counter()
delta = endTime - startTimeprint("Treat a net in %0.2f s." % delta)plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
plt.show()
三、测试结论
测试类型 | 耗费时间(秒,越小越好) |
---|---|
CUDA | 3.57 |
DirectML | 4.48 |
纯CPU | 5.31 |
看起来DirectML有点加速效果,但是还是和CUDA有差距,更何况这个是笔记本上最弱的MX150显卡的CUDA。微软要加油了。另外AMD的CPU,还是安心打游戏好了。
相关文章:
Pytorch在cuda、AMD DirectML和AMD CPU下性能比较
一、测试环境 CUDA环境: i7-8550u 16G DDR4 2133MHz nVidia MX150 2GB AMD DirectML环境: Ryzen 5 5600G 32G DDR4 3200MHz Vega7 4GB AMD 纯CPU环境:Ryzen 5 5600G 32G DDR4 3200MHz 其他硬件配置的硬盘、电源均一致。Pytorch版本为2.0.0,Pyt…...

哈工大计算机网络课程局域网详解之:交换机概念
哈工大计算机网络课程局域网详解之:交换机概念 文章目录 哈工大计算机网络课程局域网详解之:交换机概念以太网交换机(switch)交换机:多端口间同时传输交换机转发表:交换表交换机:自学习交换机互…...
Jenkins Pipeline的hasProperty函数
函数的作用 用于判断某个参数或者字段是否存在。 用法 例子一 def projectStr "P1,P2,P3" pipeline {agent anyparameters {extendedChoice(defaultValue: "${projectStr}",description: 选择要发布的项目,multiSelectDelimiter: ,,name: SELECT_PROJ…...

芯片制造详解.净洁室的秘密.学习笔记(三)
这是芯片制造系列的第三期跟学up主三圈,这里对其视频内容做了一下整理和归纳,喜欢的可以看原视频。 芯片制造详解03: 洁净室的秘密|为何芯片厂缺人? 芯片制造详解.净洁室的秘密.学习笔记 三 简介一、干净的级别二、芯片…...

可解释的 AI:在transformer中可视化注意力
Visualizing Attention in Transformers | Generative AI (medium.com) 一、说明 在本文中,我们将探讨可视化变压器架构核心区别特征的最流行的工具之一:注意力机制。继续阅读以了解有关BertViz的更多信息,以及如何将此注意力可视化工具整合到…...

k8s Webhook 使用java springboot实现webhook 学习总结
k8s Webhook 使用java springboot实现webhook 学习总结 大纲 基础概念准入控制器(Admission Controllers)ValidatingWebhookConfiguration 与 MutatingWebhookConfiguration准入检查(AdmissionReview)使用Springboot实现k8s-Web…...

JS逆向之猿人学爬虫第20题-wasm
文章目录 题目地址sign参数分析python算法还原往期逆向文章推荐题目地址 https://match.yuanrenxue.cn/match/20第20题被置顶到了第1页,题目难度 写的是中等 算法很简单,就一个标准的md5算法,主要是盐值不确定, 而盐值就在wasm里面,可以说难点就在于wasm分析 sign参数分…...

【双指针优化DP】The 2022 Hangzhou Normal U Summer Trials H
Problem - H - Codeforces 题意: 思路: 首先很明显是DP 因为只有1e6个站点,因此可以以站点作为阶段 注意到K很小,因此可以尝试把这个当作第二维 设dp[i][j]为到达第i个站点,已经花了j元钱的最小步数 然后就想了一…...
[论文笔记] LLM数据集——金融数据集
一、chatglm_金融 ModelScope 魔搭社区 请将modelscope sdk升级到v1.7.2rc0,执行: pip3 install "modelscope1.7.2rc0" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html # 方式1 git clone http://www.modelscope…...

在亚马逊平台,如何有效举报违规行为?
众所周知,在每个行业都有一些违规现象,甚至这些违规现象还会给自己带来利益方面的损失,一旦触犯到自己的利益的话,那自己是需要想办法解决的,想办法规避。 就拿开亚马逊店铺来说,比较容易遇到的就是产品侵…...

深度学习入门教学——神经网络
深度学习就是训练神经网络。 1、神经网络 举个最简单的例子,以下是一个使用线性回归来预测房屋价格的函数。这样一个用于预测房屋价格的函数被称作是一单个神经元。大一点的神经网络,就是将这些单个神经元叠加起来。例如:神经网络根据多个相…...
阿里Java开发手册~OOP 规约
1. 【强制】避免通过一个类的对象引用访问此类的静态变量或静态方法,无谓增加编译器解析成 本,直接用 类名 来访问即可。 2. 【强制】所有的覆写方法,必须加 Override 注解。 说明: getObject() 与 get 0 bject() 的问题。…...

【Mysql数据库面试01】内连接 左连接 右连接 全连接
【Mysql数据库】内连接 左连接 右连接 全连接 0.准备1.内连接1.1 SQL(不带where)1.2 SQL(带where)1.3总结 2.左连接2.1SQL(不带where)2.2SQL(带where)2.3总结 3.右连接3.1 SQL(不带where&#x…...

事务隔离:为什么你改了我还看不见
前提概要 你肯定不陌生,和数据库打交道的时候,我们总是会用到事务。最经典的例子就 是转账,你要给朋友小王转 100 块钱,而此时你的银行卡只有 100 块钱。 转账过程具体到程序里会有一系列的操作,比如查询余额、做加减法…...

吴恩达ChatGPT《LangChain Chat with Your Data》笔记
文章目录 1. Introduction2. Document Loading2.1 Retrieval Augmented Generation(RAG)2.2 Load PDFs2.3 Load YouTube2.4 Load URLs2.5 Load Notion 3. Document Splitting3.1 Splitter Flow3.2 Character Splitter3.3 Token Splitter3.4 Markdown Spl…...

https和http有什么区别
https和http有什么区别 简要 区别如下: https的端口是443.而http的端口是80,且二者连接方式不同;http传输时明文,而https是用ssl进行加密的,https的安全性更高;https是需要申请证书的,而h…...

振弦采集仪及在线监测系统完整链条的岩土工程隧道安全监测
振弦采集仪及在线监测系统完整链条的岩土工程隧道安全监测 近年来,随着城市化的不断推进和基础设施建设的不断发展,隧道建设也日益成为城市交通发展的必需品。然而,隧道建设中存在着一定的安全隐患,如地质灾害、地下水涌流等&…...

linux基础学习
1.day1 2.day2 1、VIM配置; 2、安装SSH,调用putty接入终端; 3、shell命令; *:匹配任意长度的字符 ?:匹配一个长度的字符 [...]:匹配其中指定的一个字符 [-]:匹配指定…...
android 前端常用布局文件升级总结(二)
问题一: android:name“android.support.v4.content.FileProvider” 报红 问题解决方案: 把xml布局文件里面: android.support.v4.content.FileProvider 更换成 androidx.core.content.FileProvider 问题二: android.support.design.wid…...

Linux复习——基础知识
作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页 1. 有关早期linux系统中 sysvin的init的7个级别描述正确的是( )[选择1项] A. init 1 关机状态 B. init 2 字符界面多用户模式 …...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...