当前位置: 首页 > news >正文

Pytorch在cuda、AMD DirectML和AMD CPU下性能比较

一、测试环境

CUDA环境: i7-8550u + 16G DDR4 2133MHz + nVidia MX150 2GB

AMD DirectML环境: Ryzen 5 5600G + 32G DDR4 3200MHz + Vega7 4GB

AMD 纯CPU环境:Ryzen 5 5600G + 32G DDR4 3200MHz 

其他硬件配置的硬盘、电源均一致。Pytorch版本为2.0.0,Python环境为3.7.11,Win10 LTSC。

二、测试代码

拟合一个100万点数的函数,并计算从神经网络被传入内存/显存开始,到计算结果出来,所耗费的时间。不含前面准备时间、出图时间。计算三次手动记录平均值。代码如下:

CUDA测试代码

# -*- coding: utf-8 -*-
# @Time    : 19/12/9 16:38
# @Author  : JL
# @File    : pytorchTest.py
# @Software: PyCharmimport matplotlib.pyplot as plt
import torch
import timex = torch.unsqueeze(torch.linspace(-1, 1, 1000000), dim=1).cuda()
y = x.pow(2) + 0.3 * torch.rand(x.size()).cuda()net1 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
lossFunc = torch.nn.MSELoss()device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("当前使用的设备是:" + str(torch.cuda.get_device_name(torch.cuda.current_device())))
print("当前CUDA、CUDNN版本号分别为:"+str(torch.version.cuda)+"、"+str(torch.backends.cudnn.version()))
print("当前Pytorch版本号为:"+str(torch.__version__))startTime = time.perf_counter()net1.to(device)for t in range(100):prediction = net1(x)loss = lossFunc(prediction, y)optimizer.zero_grad()loss.backward()optimizer.step()print(loss.data.cpu().numpy())endTime = time.perf_counter()
delta = endTime-startTimeprint("Treat a net in %0.2f s." % delta)plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
plt.show()

DirectML、AMD CPU测试代码:

# -*- coding: utf-8 -*-
# @Time    : 19/12/9 16:38
# @Author  : JL
# @File    : pytorchTest.py
# @Software: PyCharmimport matplotlib.pyplot as plt
import torch
import torch_directml
import timedml = torch_directml.device()  # 如果使用DirectML,则分配到dml上
cpuML = torch.device("cpu")  # 如果仅使用CPU,则选择分配到cupML上# 注意修改dml或cpuML
x = torch.unsqueeze(torch.linspace(-1, 1, 1000000), dim=1).to(dml)
y = x.pow(2) + 0.3 * torch.rand(x.size()).to(dml)net1 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
lossFunc = torch.nn.MSELoss()print("当前Pytorch版本号为:" + str(torch.__version__))startTime = time.perf_counter()net1.to(dml)  # 注意修改dml或cpuMLfor t in range(100):prediction = net1(x)loss = lossFunc(prediction, y)optimizer.zero_grad()loss.backward()optimizer.step()print(loss.data.cpu().numpy())endTime = time.perf_counter()
delta = endTime - startTimeprint("Treat a net in %0.2f s." % delta)plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
plt.show()

三、测试结论

测试类型 耗费时间(秒,越小越好)
CUDA3.57
DirectML4.48
纯CPU5.31

看起来DirectML有点加速效果,但是还是和CUDA有差距,更何况这个是笔记本上最弱的MX150显卡的CUDA。微软要加油了。另外AMD的CPU,还是安心打游戏好了。

相关文章:

Pytorch在cuda、AMD DirectML和AMD CPU下性能比较

一、测试环境 CUDA环境: i7-8550u 16G DDR4 2133MHz nVidia MX150 2GB AMD DirectML环境: Ryzen 5 5600G 32G DDR4 3200MHz Vega7 4GB AMD 纯CPU环境:Ryzen 5 5600G 32G DDR4 3200MHz 其他硬件配置的硬盘、电源均一致。Pytorch版本为2.0.0,Pyt…...

哈工大计算机网络课程局域网详解之:交换机概念

哈工大计算机网络课程局域网详解之:交换机概念 文章目录 哈工大计算机网络课程局域网详解之:交换机概念以太网交换机(switch)交换机:多端口间同时传输交换机转发表:交换表交换机:自学习交换机互…...

Jenkins Pipeline的hasProperty函数

函数的作用 用于判断某个参数或者字段是否存在。 用法 例子一 def projectStr "P1,P2,P3" pipeline {agent anyparameters {extendedChoice(defaultValue: "${projectStr}",description: 选择要发布的项目,multiSelectDelimiter: ,,name: SELECT_PROJ…...

芯片制造详解.净洁室的秘密.学习笔记(三)

这是芯片制造系列的第三期跟学up主三圈,这里对其视频内容做了一下整理和归纳,喜欢的可以看原视频。 芯片制造详解03: 洁净室的秘密|为何芯片厂缺人? 芯片制造详解.净洁室的秘密.学习笔记 三 简介一、干净的级别二、芯片…...

可解释的 AI:在transformer中可视化注意力

Visualizing Attention in Transformers | Generative AI (medium.com) 一、说明 在本文中,我们将探讨可视化变压器架构核心区别特征的最流行的工具之一:注意力机制。继续阅读以了解有关BertViz的更多信息,以及如何将此注意力可视化工具整合到…...

k8s Webhook 使用java springboot实现webhook 学习总结

k8s Webhook 使用java springboot实现webhook 学习总结 大纲 基础概念准入控制器(Admission Controllers)ValidatingWebhookConfiguration 与 MutatingWebhookConfiguration准入检查(AdmissionReview)使用Springboot实现k8s-Web…...

JS逆向之猿人学爬虫第20题-wasm

文章目录 题目地址sign参数分析python算法还原往期逆向文章推荐题目地址 https://match.yuanrenxue.cn/match/20第20题被置顶到了第1页,题目难度 写的是中等 算法很简单,就一个标准的md5算法,主要是盐值不确定, 而盐值就在wasm里面,可以说难点就在于wasm分析 sign参数分…...

【双指针优化DP】The 2022 Hangzhou Normal U Summer Trials H

Problem - H - Codeforces 题意: 思路: 首先很明显是DP 因为只有1e6个站点,因此可以以站点作为阶段 注意到K很小,因此可以尝试把这个当作第二维 设dp[i][j]为到达第i个站点,已经花了j元钱的最小步数 然后就想了一…...

[论文笔记] LLM数据集——金融数据集

一、chatglm_金融 ModelScope 魔搭社区 请将modelscope sdk升级到v1.7.2rc0,执行: ​ pip3 install "modelscope1.7.2rc0" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html # 方式1 git clone http://www.modelscope…...

在亚马逊平台,如何有效举报违规行为?

众所周知,在每个行业都有一些违规现象,甚至这些违规现象还会给自己带来利益方面的损失,一旦触犯到自己的利益的话,那自己是需要想办法解决的,想办法规避。 就拿开亚马逊店铺来说,比较容易遇到的就是产品侵…...

深度学习入门教学——神经网络

深度学习就是训练神经网络。 1、神经网络 举个最简单的例子,以下是一个使用线性回归来预测房屋价格的函数。这样一个用于预测房屋价格的函数被称作是一单个神经元。大一点的神经网络,就是将这些单个神经元叠加起来。例如:神经网络根据多个相…...

阿里Java开发手册~OOP 规约

1. 【强制】避免通过一个类的对象引用访问此类的静态变量或静态方法,无谓增加编译器解析成 本,直接用 类名 来访问即可。 2. 【强制】所有的覆写方法,必须加 Override 注解。 说明: getObject() 与 get 0 bject() 的问题。…...

【Mysql数据库面试01】内连接 左连接 右连接 全连接

【Mysql数据库】内连接 左连接 右连接 全连接 0.准备1.内连接1.1 SQL(不带where)1.2 SQL(带where)1.3总结 2.左连接2.1SQL(不带where)2.2SQL(带where)2.3总结 3.右连接3.1 SQL(不带where&#x…...

事务隔离:为什么你改了我还看不见

前提概要 你肯定不陌生,和数据库打交道的时候,我们总是会用到事务。最经典的例子就 是转账,你要给朋友小王转 100 块钱,而此时你的银行卡只有 100 块钱。 转账过程具体到程序里会有一系列的操作,比如查询余额、做加减法…...

吴恩达ChatGPT《LangChain Chat with Your Data》笔记

文章目录 1. Introduction2. Document Loading2.1 Retrieval Augmented Generation(RAG)2.2 Load PDFs2.3 Load YouTube2.4 Load URLs2.5 Load Notion 3. Document Splitting3.1 Splitter Flow3.2 Character Splitter3.3 Token Splitter3.4 Markdown Spl…...

https和http有什么区别

https和http有什么区别 简要 区别如下: ​ https的端口是443.而http的端口是80,且二者连接方式不同;http传输时明文,而https是用ssl进行加密的,https的安全性更高;https是需要申请证书的,而h…...

振弦采集仪及在线监测系统完整链条的岩土工程隧道安全监测

振弦采集仪及在线监测系统完整链条的岩土工程隧道安全监测 近年来,随着城市化的不断推进和基础设施建设的不断发展,隧道建设也日益成为城市交通发展的必需品。然而,隧道建设中存在着一定的安全隐患,如地质灾害、地下水涌流等&…...

linux基础学习

1.day1 2.day2 1、VIM配置; 2、安装SSH,调用putty接入终端; 3、shell命令; *:匹配任意长度的字符 ?:匹配一个长度的字符 [...]:匹配其中指定的一个字符 [-]:匹配指定…...

android 前端常用布局文件升级总结(二)

问题一: android:name“android.support.v4.content.FileProvider” 报红 问题解决方案: 把xml布局文件里面: android.support.v4.content.FileProvider 更换成 androidx.core.content.FileProvider 问题二: android.support.design.wid…...

Linux复习——基础知识

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 1. 有关早期linux系统中 sysvin的init的7个级别描述正确的是( )[选择1项] A. init 1 关机状态 B. init 2 字符界面多用户模式 …...

【数据结构】实验三:链表

实验三链表 一、实验目的与要求 1)熟悉链表的类型定义; 2)熟悉链表的基本操作; 3)灵活应用链表解决具体应用问题。 二、实验内容 1)请设计一个单链表的存储结构,并实现单链表中基本运算算…...

第4集丨webpack 江湖 —— loader的安装和使用

目录 一、loader简介1.1 使用 loader1.1.1 配置文件方式1.1.2 内联方式 1.2 loader 特性1.3 解析 loader1.4 命名规范 二、css loader的安装和使用2.1 安装2.2 配置2.3 测试 三、 less-loader 的安装和使用3.1 安装3.2 配置3.3 测试3.4 附件3.4.1 webpack.config.js3.4.2 index…...

【Lua学习笔记】Lua进阶——协程

文章目录 协程协程的定义和调度StatusRunning 协程 协程是一种并发操作,相比于线程,线程在执行时往往是并行的,并且线程在创建销毁执行时极其消耗资源,并且过长的执行时间会造成主进程阻塞。而协程可以以并发时轮值时间片来执行&…...

亚马逊云科技纽约峰会,充分释放数据价值和生成式AI的潜力

生成式AI将深刻改变每个公司的运营方式,标志着人工智能技术发展的新转折点。亚马逊云科技昨日在纽约峰会上宣布,推出七项生成式AI新功能,进一步降低了生成式AI的使用门槛,让无论是业务用户还是开发者都能从中受益。借助这些新功能…...

什么是 web3?

在百度搜索引擎输入 “Web3”、“大厂”。跳出来基本都是这样的标题. 以及如今的互联网行业 “哀鸿遍野”,不仅内卷,还裁员。然后掀起一阵风,猛吹 Web3 的好,数据回归用户……最后再 “威逼利诱” 一下,Web3 就是 20 年…...

[驱动开发]字符设备驱动应用——点灯

点亮开发板stm32mp157的三盏灯 //头文件 #ifndef __LED_H__ #define __LED_H__//封装GPIO寄存器 typedef struct { volatile unsigned int MODER; // 0x00volatile unsigned int OTYPER; // 0x04volatile unsign…...

前端学习——Vue (Day5)

自定义指令 <template><div><h1>自定义指令</h1><input v-focus ref"inp" type"text" /></div> </template><script> export default {// mounted(){// this.$ref.inp.focus()// }// 2. 局部注册指令di…...

Ceph版本

每个Ceph的版本都有一个英文的名称和一个数字形式的版本编号 第一个 Ceph 版本编号是 0.1&#xff0c;发布于2008 年 1月。之后是0.2,0.3....多年来&#xff0c;版本号方案一直没变。 2015年 4月0.94.1 (Hammer 的第一个修正版) 发布后&#xff0c;为了避免 0.99 (以及 0.100…...

cspm是什么?考了有用吗?

CSPM是项目管理专业人员能力评价等级证书&#xff0c;相当于 PMP 的本土化&#xff0c;CSPM 相关问题大家都很关心&#xff0c;今天就给大家全面解答一下 CSPM到底是何方神圣&#xff1f; 文章主要是解答下面几个常见问题&#xff0c;其他问题可以留言或者私信咨询我哦~ 一、什…...

Java阶段五Day14

Java阶段五Day14 文章目录 Java阶段五Day14分布式事务整合demo案例中架构&#xff0c;代码关系发送半消息本地事务完成检查补偿购物车消费 鲁班周边环境调整前端启动介绍启动前端 直接启动的项目gateway&#xff08;网关&#xff09;login&#xff08;登录注册&#xff09;atta…...