当前位置: 首页 > news >正文

【图论】三种中心性 —— 特征向量、katz 和 PageRank

维基百科:在图论和网络分析中,中心性指标为图中相应网络位置的节点分配排名或数值。中心性这一概念最初起源于社交网络分析,因此很多衡量中心性的术语也反映了其社会学背景。

不同中心性指标对 “重要” 的衡量方式不同,因此适用于不同的情形。

一、特征向量中心性(eigenvector centrality) 

特征向量这一概念最早应该是在 线性代数 这门课程中接触到的,而取名中的特征向量也与它最初的概念相关,我们先回顾下什么是 “特征值” 和 “特征向量”。

1.1 线性代数中的特征向量

定义:设 A 是 n 阶方阵,若存在向量使得 Ax = \lambda x ,则称 x 为 A 的特征向量,\lambda 为 A 的特征值(严格定义请参考权威文献)。

由定义可见,特征向量的本质是它与原矩阵相乘后,得到的矩阵与特征向量方向相同,仅存在缩放关系(即 \lambda 倍的缩放),该缩放比例称为特征值。进一步延伸,原矩阵无论乘上多少特征向量,其方向都是确定的。回顾一道求特征值和特征向量的简单例题,可以更好回忆相关概念,求 \bigl(\begin{smallmatrix} 3 & 1\\ 1 & 3 \end{smallmatrix}\bigr) 的特征向量和特征值。


\begin{pmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{pmatrix} = (3-\lambda )^2 - 1 = 0 

解得两个特征值 2 或 4,则应有

\begin{pmatrix} 3-2 & 1\\ 1 & 3-2 \end{pmatrix}\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}

解得 x_1+ x_2 = 0 ,因此可取特征值 2 的特征向量为

x = \begin{pmatrix} 1\\ -1 \end{pmatrix}.

求特征值 4 的特征向量同理。


1.2 图论中的特征向量中心性

定义:图 G = (V, E),定义其邻接矩阵 A,a_{v,t}=0 表示节点 v 和 t 不相连,a_{v,t}=1 表示节点 v 和 t 相连,则节点 v 的中心性 x 的分数计算式为

 x_v = \frac{1}{\lambda}\sum_{t=1}^{t\in G}a_{v,t}x_t .

单纯看公式会觉得不好理解,结合具体的例子可以马上掌握,它在本质上是求图 G 邻接矩阵的特征向量,只不过在算法设计中,通常不是通过数学方式求得,而是采用迭代逼近的方式得到一个近似解。特征向量中心性的核心思想是,一个结点的邻居越重要,该结点就越重要。下面是一个经典的分析图,

 各节点上的数字表示该结点的权重,以 5 作为节点 1,按顺时针标记各节点,且中心节点记为节点 5,则得到邻接矩阵为

A = \begin{pmatrix} 0 & 1 & 0& 1& 1\\ 1 & 0 & 1& 0& 0\\ 0 & 1 & 0& 0& 0\\ 1 & 0 & 0& 0& 1\\ 1 & 0 & 0& 1& 0 \end{pmatrix}

第一轮迭代,邻接矩阵乘上各结点的分数

A' = \begin{pmatrix} 0 & 1 & 0& 1& 1\\ 1 & 0 & 1& 0& 0\\ 0 & 1 & 0& 0& 0\\ 1 & 0 & 0& 0& 1\\ 1 & 0 & 0& 1& 0 \end{pmatrix}\begin{pmatrix} 5\\ 1\\ 3\\ 3\\ 2 \end{pmatrix} = \begin{pmatrix} 6\\ 8\\ 1\\ 7\\ 8 \end{pmatrix}

迭代完成后,各结点分数发生变化,效果为节点“吸收”了邻接节点的分数,邻接节点分数高的,迭代后分数就高。且经过多轮迭代后,各节点间的相对分数将不再发生变化,即收敛,仅存在绝对分数的缩放,此时我们就得到了最终的中心性分数矩阵,而该矩阵是邻接矩阵的特征向量。

二、katz 中心性

针对特征向量中心性无法用于有向图的不足,提出了 katz 中心性。

2.1 理解特征向量中心性的不足

每篇博客都说了,特征向量中心性不能用于有向图,但是为什么呢,这个结论怎么来的?

此处稍微探究下,我的理解不一定是对的,但特征向量中心性确实存在一些问题。首先观察上一节中邻接矩阵的特点,它是沿着主对角线对称的矩阵。这是可以理解的,无向图的连通性肯定是对称的。而特征向量中心性算法的本质是求邻接矩阵的特征向量,当邻接矩阵的性质发生变化时,特征向量必然会受影响。

在有向图中没有沿主对角线对称这一性质,那么对于只有出度、没有入度的节点,就存在一个致命问题,它的分数一直被出度节点吸收,而它自身分数将归零(以下图为例)。这显然是不合理的,这也是我理解的特征向量中心性计算方式不足的原因。

 2.2 katz 中心性的改进思路

首先看看它的中心性计算公式,

x_{v}=\sum_{k=1}^{k_{max}}\alpha ^k\sum_{j=1}^{n}(A^k)_{v,j}x_{j} + \beta.

比较和特征向量中心性的不同,katz 引入了两个新的变量,分别是衰减因子 \alpha 和基本偏移量 \beta 。第一个求和号中的 k 表示 k-hop,即只考虑与节点 v 距离在 k 以内(通常以一个节点作为一个单位距离)的节点分数,该思路在特征向量中心性中也是可行的,只是在上一节中未列出来。

  • 衰减因子 \alpha 随着 k 增大呈指数级减小,其设计思路是距离越近的节点对分数的影响应更大,反之应有衰减;
  • 偏移量 \beta 是为了避免出现 2.1 中讨论的分数归零现象;
  • A^k 可能较难理解,其实就是在 k 距离内的邻接矩阵,如 k = 1 就是与节点 v 直接相连的邻接矩阵,k = 2 就是与节点 v 隔一个节点相连的邻接矩阵。

通过例子理解先跳过,可以自己搜索具体的计算例子。

三、PageRank 中心性(PageRank centrality)

PageRank 应该是这三者中最出名的,主要用于谷歌的网页排序。
 

3.1 PageRank 中心性思想

相关文章:

【图论】三种中心性 —— 特征向量、katz 和 PageRank

维基百科:在图论和网络分析中,中心性指标为图中相应网络位置的节点分配排名或数值。中心性这一概念最初起源于社交网络分析,因此很多衡量中心性的术语也反映了其社会学背景。 不同中心性指标对 “重要” 的衡量方式不同,因此适用于…...

[sqoop]将hive查询后的数据导入到MySQL

一、知识点 export:将Hive的表导入到mysql叫导出 搜了很多,发现sqoop在hive导出到mysql时 1)不支持where参数对数据进行过滤。 2)不支持指定hive表的方式导出,只能指定Hive目录进行导出。 二、操作 1、在MySQL中建表 creat…...

Linux df、du命令

df:查看文件系统硬盘使用情况 df 命令,用于显示 Linux 系统中各文件系统的硬盘使用情况,包括文件系统所在硬盘分区的总容量、已使用的容量、剩余容量等。 df 命令的基本格式为: [rootlocalhost ~]# df [选项] [目录或文件名] df…...

java版+免费商城搭建+小程序商城免费搭建+Spring Cloud + Spring Boot + MybatisPlus + 前后端分离 + 二次开发

J2EE企业分布式微服务云快速开发架构 Spring CloudSpring Boot2MybatisOauth2ElementUI 前后端分离 1. 鸿鹄Cloud架构清单 2. Commonservice(通用服务) 通用服务:对spring Cloud组件的使用&封装,是一套完整的针对于分布式微…...

软件设计师学习第一章

计算机组成与体系结构(6分) 内容概述 数据的表示 进制转换 R 进制转十进制使用按权展开法,其具体操作方式为:将 R 进制数的每一位数值用 Rk 形示,即幂的底数是 R ,指数为 k , k 与该位和小数点…...

蓝桥杯单片机第十一届国赛 真题+代码

iic.c /* # I2C代码片段说明1. 本文件夹中提供的驱动代码供参赛选手完成程序设计参考。2. 参赛选手可以自行编写相关代码或以该代码为基础&#xff0c;根据所选单片机类型、运行速度和试题中对单片机时钟频率的要求&#xff0c;进行代码调试和修改。 */ #include <STC1…...

IDC报告背后:大模型时代,重新理解AI公有云

大模型之于AI公有云的意义&#xff0c;在于大模型可以改变过去“手工作坊定制算法”的高成本模式&#xff0c;转向“工厂模式”&#xff0c;只需要微调和精调&#xff0c;就可以形成针对性的场景算法。 作者|葛覃 出品|产业家 一年前&#xff0c;依然有不少云计算从业者思…...

UNH-IOL Reservation 一致性测试用例【7】- 清除Reservation

Reservation 系列导航 UNH-IOL Reservation 一致性测试用例【1】- Reservation Report 命令验证 UNH-IOL Reservation 一致性测试用例【2】- Reservation注册 UNH-IOL Reservation 一致性测试用例【3】- 取消注册 UNH-IOL Reservation 一致性测试用例【4】- Reservation Acqui…...

Python 生成随机图片验证码

使用Python生成图片验证码 Python 生成随机图片验证码安装pillow包pillow包生成图片基本用法生成图片验证码 Python 生成随机图片验证码 在写一个Web项目的时候一般要写登录操作&#xff0c;而为了安全起见&#xff0c;现在的登录功能都会加上输入图片验证码这一功能&#xff…...

一些有趣的 js 功能函数

一些有趣的 js 功能函数 数组生成数组打乱数组数组简单数据去重数组唯一值数据去重多数组取交集查找最大值索引查找最小值索引找到最接近的数值压缩多个数组&#xff08;拉链函数&#xff09;矩阵交换行和列 数字转换进制转换 正则手机号格式化去除多余空格 web重新加载当前页面…...

摄像头m2dock(MAIX-II DOCK)

官方文档地址 https://wiki.sipeed.com/soft/maixpy3/zh/index.html 一、软件准备 1 烧录镜像软件 2 镜像 当前最近版本镜像文件 3 SDFormatter 4 Maixpy IDE 二、SD卡准备 1 格式化SD卡&#xff08;用SDFormatter&#xff09; 2 烧录 3 弹出&#xff0c;插入开发板中 出现…...

SpringBoot 如何优雅的进行全局异常处理

在SpringBoot的开发中&#xff0c;为了提高程序运行的鲁棒性&#xff0c;我们经常需要对各种程序异常进行处理&#xff0c;但是如果在每个出异常的地方进行单独处理的话&#xff0c;这会引入大量业务不相关的异常处理代码&#xff0c;增加了程序的耦合&#xff0c;同时未来想改…...

OSPF路由协议(红茶三杯CCNA)

链路状态路由协议 OSPF&#xff08;开放式最短路径优先&#xff09;Open Shortest Path First 是一种链路状态路由协议&#xff0c;无路由循环&#xff08;全局拓扑&#xff09;&#xff0c;RFC2328 “开放”意味着非私有的 管理型距离&#xff1a;110 OSPF采用SPF算法计算到达…...

redis中使用bloomfilter判断元素是否存在

一 bloomfiler的作用 1.1 bloomfilter的作用 由一个初始值为0的bit数组组成&#xff0c;和多个hash函数构成&#xff0c;用来判断集合中是否存在某个元素。 一个很长的二进制数组&#xff08;00000000&#xff09;一系列随机hash算法映射函数。主要用于判断一个元素是否存在…...

互联网医院系统源码实现:打造现代化医疗服务平台

摘要 本文将介绍一个基于Python的简化版互联网医院系统的源码实现&#xff0c;主要包含用户注册与登录、医生信息管理、在线预约挂号、在线问诊与咨询、电子病历管理、在线支付与结算等功能。该源码实现仅为示例&#xff0c;实际开发中需要考虑更多的业务逻辑和安全性。 1. …...

每天100w次登陆请求, 8G 内存该如何设置JVM参数?

一、新系统上线如何规划容量&#xff1f; 1.套路总结 任何新的业务系统在上线以前都需要去估算服务器配置和JVM的内存参数&#xff0c;这个容量与资源规划并不仅仅是系统架构师的随意估算的&#xff0c;需要根据系统所在业务场景去估算&#xff0c;推断出来一个系统运行模型&…...

Fiddler Everywhere(TTP调试抓包工具) for Mac苹果电脑版

Fiddler Everywhere for Mac版是Mac电脑上的一款跨平台的HTTP调试抓包工具&#xff0c;Fiddler Everywhere for Mac能够记录客户端与服务器之间的所有HTTP&#xff08;S&#xff09;通信&#xff0c;支持对包进行监视、分析、设置断点、甚至修改请求/响应数据等操作。 适用于任…...

Paragon NTFS2023最新版Mac读写NTFS磁盘工具

Paragon NTFS for Mac是Mac平台上一款非常优秀的读写工具&#xff0c;可以在Mac OS X中完全读写、修改、访问NTFS硬盘、U盘等外接设备的文件。这款软件最大的亮点简书可以让我们读写 NTFS 分区&#xff0c;因为在Mac OS X 系统上&#xff0c;默认状态下我们只能读取NTFS 分区&a…...

vs2013 32位 编译的 dll,重新用vs2022 64位编译,所遇问题记录

目录 一、vs2013 32 DLL 转 VS2022 64 DLL 所遇问题 1、 LNK2038: 检测到“_MSC_VER”的不匹配项: 值“1800”不匹配值“1900” 2、原先VS2013 现在 VS2022 导致的vsnprintf 重定义问题 3、 无法解析的外部符号 __vsnwprintf_s 4、无法解析的外部符号__imp__CertFreeC…...

Linux_CentOS_7.9部署Docker以及镜像加速配置等实操验证全过程手册

前言&#xff1a;实操之前大家应该熟悉一个新的名词DevOps 俗称开发即运维、新一代开发工程师&#xff08;Development和Operations的组合词&#xff09;是一组过程、方法与系统的统称&#xff0c;用于促进开发&#xff08;应用程序/软件工程&#xff09;、技术运营和质量保障&…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...