当前位置: 首页 > news >正文

逻辑斯特回归

*分类是离散的,回归是连续的

下载数据集

train=True:下载训练集

逻辑斯蒂函数保证输出值在0-1之间

能够把实数值映射到0-1之间

 导函数类似正态分布

 其他饱和函数sigmoid functions

循环神经网络经常使用tanh函数

与线性回归区别

塞戈马无参数,构造函数无区别

 更改损失函数MSE->BCE损失(越小越好)

分布的差异:KL散度,cross-entropy交叉熵 

二分类的交叉熵

 

# -*- coding: utf-8 -*-
# @Time    : 2023-07-18 20:26
# @Author  : yuer
# @FileName: exercise06.py
# @Software: PyCharm
import matplotlib.pyplot as plt
import numpy as np
import torch# 数据集
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])# 先根据x算出y值再根据y的范围找到分类class logisticRegressionModel(torch.nn.Module):def __init__(self):super(logisticRegressionModel, self).__init__()self.linear = torch.nn.Linear(1, 1)# x_data,y_data都是一维,与线性回归相比构造没有函数区别def forward(self, x):y_pred = torch.sigmoid(self.linear(x))return y_predmodel = logisticRegressionModel()# 默认情况size_average=True 即loss是1/n倍的,False设置loss不除n
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# SGD梯度下降优化方法 初始化w,b都为0for epoch in range(1000):y_pred = model(x_data)loss = criterion(y_pred, y_data)print(epoch, loss.item())optimizer.zero_grad()  # 清空梯度loss.backward()  # 反馈算梯度并更新optimizer.step()  # 更新w,b的值print('w=', model.linear.weight.item())
print('b=', model.linear.bias.item())x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred=', y_test.data)x = np.linspace(0, 10, 200)  # 在线性空间中以均匀步长生成数字序列;在0-10之间的200个点
x_t = torch.Tensor(x).view((200, 1))  # 转换为200*1的矩阵
y_t = model(x_t)  # 利用模型训练
y = y_t.data.numpy()
plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt.show()

相关文章:

逻辑斯特回归

*分类是离散的,回归是连续的 下载数据集 trainTrue:下载训练集 逻辑斯蒂函数保证输出值在0-1之间 能够把实数值映射到0-1之间 导函数类似正态分布 其他饱和函数sigmoid functions 循环神经网络经常使用tanh函数 与线性回归区别 塞戈马无参数&#x…...

OpenCV 算法解析

opencv大坑之BGR opencv对于读进来的图片的通道排列是BGR,而不是主流的RGB!谨记! #opencv读入的矩阵是BGR,如果想转为RGB,可以这么转 img4 cv2.imread(1.jpg) img4 cv2.cvtColor(img4,cv2.COLOR_BGR2RGB) OpenCV 常见…...

springboot创建并配置环境(一) - 创建环境

文章目录 一、介绍二、启动环境Environment的分析三、进入源码四、创建环境1. 如何确定应用类型2. 测试 一、介绍 在springboot的启动流程中,启动环境Environment是可以说是除了应用上下文ApplicationContext之外最重要的一个组件了,而且启动环境为应用…...

2023JAVA 架构师面试 130 题含答案:JVM+spring+ 分布式 + 并发编程》...

此文包含 Java 面试的各个方面,史上最全,苦心整理最全 Java 面试题目整理包括基JVM算法数据库优化算法数据结构分布式并发编程缓存等,使用层面广,知识量大,涉及你的知识盲点。要想在面试者中出类拔萃就要比人付出更多的…...

layui手机端上传文件时返回404 Not Found的解决方案(client_body_temp权限设置)

关于 1.client_body_temp的作用 client_body_temp是一个指令指定保存客户端请求体临时文件的目录路径,以及是否进行缓存的配置指令。 在Web服务器中,当客户端向服务器发送请求时,请求体中包含了请求的主体部分,比如表单数据、上…...

网络编程知识

网络编程知识 一.网络七层模型 OSI模型: OSI 模型(Open System Interconnection model)是一个由国际标准化组织􏰁提出的概念模型,试图提供一个使各种不同的计算机和网络在世界范围内实现互联的标准框架。它将计算机网络体系结构划分为七层…...

线性神经网路——线性回归随笔【深度学习】【PyTorch】【d2l】

文章目录 3.1、线性回归3.1.1、PyTorch 从零实现线性回归3.1.2、简单实现线性回归 3.1、线性回归 线性回归是显式解,深度学习中绝大多数遇到的都是隐式解。 3.1.1、PyTorch 从零实现线性回归 %matplotlib inline import random import torch #d2l库中的torch模块&a…...

js实现多种按钮

你可以使用JavaScript来实现多种类型的按钮&#xff0c;以下是几个常见的示例&#xff1a; 普通按钮&#xff08;Normal Button&#xff09;&#xff1a; <button>Click me</button> 带图标的按钮&#xff08;Button with Icon&#xff09;&#xff1a; <bu…...

getopt函数(未更新完)

2023年7月28日&#xff0c;周五上午 这是我目前碰到过的比较复杂的函数之一&#xff0c; 为了彻底弄懂这个函数&#xff0c;我花了几个小时。 为了更好的说明这个函数&#xff0c;之后我可能会录制讲解视频并上传到B站&#xff0c; 如果我上传到B站&#xff0c;我会在文章添…...

SpringCloud学习路线(9)——服务异步通讯RabbitMQ

一、初见MQ &#xff08;一&#xff09;什么是MQ&#xff1f; MQ&#xff08;MessageQueue&#xff09;&#xff0c;意思是消息队列&#xff0c;也就是事件驱动架构中的Broker。 &#xff08;二&#xff09;同步调用 1、概念&#xff1a; 同步调用是指&#xff0c;某一服务…...

postcss-pxtorem适配插件动态配置rootValue(根据文件路径名称,动态改变vue.config里配置的值)

项目背景&#xff1a;一个项目里有两个分辨率的设计稿(1920和2400)&#xff0c;不能拆开来打包 参考&#xff1a; 是参考vant插件&#xff1a;移动端Vant组件库rem适配下大小异常的解决方案&#xff1a;https://github.com/youzan/vant/issues/1181 说明&#xff1a; 因为vue.c…...

代码随想录算法训练营第二十三天 | 额外题目系列

额外题目 1365. 有多少小于当前数字的数字借着本题&#xff0c;学习一下各种排序未看解答自己编写的青春版重点代码随想录的代码我的代码(当天晚上理解后自己编写) 941.有效的山脉数组未看解答自己编写的青春版重点代码随想录的代码我的代码(当天晚上理解后自己编写) 1207. 独一…...

UiAutomator

运行Espresso和UI Automator测试时要使用模拟器。国内手机的ROM大多进行过修改&#xff0c;可能加入很多限制&#xff0c;导致测试无法正常运行。 Espresso只支持一个活动内部交互行为的测试。跨越多个活动、多个应用的场景需要使用UI Automator。使用Espresso和UI Automator的…...

stm32标准库开发常用函数的使用和代码说明

文章目录 GPIO&#xff08;General Purpose Input/Output&#xff09;NVIC&#xff08;Nested Vectored Interrupt Controller&#xff09;DMA&#xff08;Direct Memory Access&#xff09;USART&#xff08;Universal Synchronous/Asynchronous Receiver/Transmitter&#xf…...

有关合泰BA45F5260中断的思考

最近看前辈写的代码&#xff0c;发现这样一段代码&#xff1a; #ifdef SUPPORT_RF_NET_FUNCTION if(UART_INT_is_L()) { TmrInsertTimer(eTmrHdlUartRxDelay,TMR_PERIOD(2000),NULL); break; } #endif 其中UART_INT_is_L&am…...

Numpy-算数函数与数学函数

⛳算数函数 如果参与运算的两个对象都是ndarray&#xff0c;并且形状相同&#xff0c;那么会对位彼此之间进 第 30 页 行&#xff08; - * /&#xff09;运算。NumPy 算术函数包含简单的加减乘除: add()&#xff0c;subtract()&#xff0c;multiply() 和divide()。 &#x1f…...

Nginx在springboot中起到的作用

面试时这样回答&#xff1a; 在Spring Boot项目中使用Nginx可以有以下用途&#xff1a; 1. 反向代理&#xff1a;Nginx可以作为反向代理服务器&#xff0c;将外部请求转发到后端的Spring Boot应用&#xff0c;并可以实现负载均衡、高可用、缓存等功能&#xff0c;提高系统的性…...

12.(开发工具篇vscode+git)vscode 不能识别npm命令

1&#xff1a;vscode 不能识别npm命令 问题描述&#xff1a; 解决方式&#xff1a; &#xff08;1&#xff09;右击VSCode图标&#xff0c;选择以管理员身份运行&#xff1b; &#xff08;2&#xff09;在终端中执行get-ExecutionPolicy&#xff0c;显示Restricted&#xff…...

如何在MacBook上彻底删除mysql

好久以前安装过&#xff0c;但是现在配置mysql一直出错&#xff0c;索性全部删掉重新配置。 一、停止MySQL服务 首先&#xff0c;请确保 MySQL 服务器已经停止运行&#xff0c;以免影响后续的删除操作。 sudo /usr/local/mysql/support-files/mysql.server stop如果你输入之…...

web攻击面试|网络渗透面试(一)

Web攻击面试大纲 常见Web攻击类型 1.1 SQL注入攻击 1.2 XSS攻击 1.3 CSRF攻击 1.4 命令注入攻击SQL注入攻击 2.1 基本概念 2.2 攻击原理 2.3 防御措施XSS攻击 3.1 基本概念 3.2 攻击原理 3.3 防御措施CSRF攻击 4.1 基本概念 4.2 攻击原理 4.3 防御措施命令注入攻击 5.1 基本概…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix&#xff0c;按照"之"字形的方式打印这个矩阵&#xff0c;例如&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为&#xff1a;1&#xff0c;…...