当前位置: 首页 > news >正文

基于小波哈尔法(WHM)的一维非线性IVP测试问题的求解(Matlab代码实现)

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想,通过将原始问题转化为小波空间中的线性问题,然后进行求解。以下是一维非线性IVP测试问题的求解步骤:

1. 确定目标问题:首先,确定你要解决的一维非线性IVP测试问题。这可能涉及到一个非线性的微分方程和一些边界条件。

2. 小波基函数选择:选择适当的小波基函数来表示问题中的解。小波基函数应该具有良好的局部特性和适应性,以便更好地表示原始问题。常见的小波基函数包括Haar小波、Daubechies小波和Symlet小波等。

3. 建立小波变换:通过将问题转化为小波空间中的线性问题来建立小波变换。这可以通过将解函数和微分方程表示为小波基函数的线性组合来实现。

4. 线性方程求解:将小波变换应用于原始问题后,将其转化为一组线性方程。通过求解这组线性方程来获得小波系数,从而得到原始问题的近似解。

5. 逆小波变换:将得到的小波系数和小波基函数的逆变换应用于小波空间,将解转换回原始空间。这将给出原始问题的近似解。

6. 结果评估:评估求解结果的准确性和收敛性。可以比较近似解与真实解之间的差异,并检查所采用的小波基函数的适用性。

需要注意的是,小波哈尔法(WHM)是一个高级的数值方法,需要掌握小波分析和线性代数的基础知识。在实施过程中,还需进行适当的数值技巧,如数值积分和线性方程求解等。

📚2 运行结果

 

部分代码:

% step 1
% collocation points
J = 3;                              % level of decomposition
N = 2^(J + 1); % N = 2M             % number of basis functions
j = 1:N;                            % index of grid points
x = (j - 0.5) ./ N;                 % grid points

% step 2
% initial values
alpha1 = 0;                         % initial value of a function
beta1  = - 1;                       % initial value of the first derivative
a1     = beta1 - alpha1;

% step 3
% Newton solver
W = zeros(N,N);
f = zeros([N 1]);
a = zeros([N 1]);

epsilon = 1e-4;
r = ones([N 1]);

iter_ind = 0;
tic
while max(r) > epsilon   
    for j = 1:N
        % f(x) computation 
        % H, P1, P2 computation
        H = 0;               
        P1 = 0;
        P2 = 0;
        for i = 1:N
            H  = H  + a(i) * haar(x(j), i, J);
            P1 = P1 + a(i) * p1(x(j), i, J);
            P2 = P2 + a(i) * p2(x(j), i, J);            
        end;
        
        f(j) = 2 * (alpha1 + beta1 * x(j) + P2) * ...
            (beta1 + P1) + H;  
        
        
        % W(x) matrix computation        
        for k = 1:N
            W(j,k) = 2 * p2(x(j),k,J) * (beta1 + P1) + ...
                2 * (alpha1 + beta1 * x(j) + P2) * p1(x(j),k,J) + haar(x(j),k,J);            
        end; % for k
    end; % for j
    
    a_new = W \ (W*a - f);      % linear system solution
    r = abs(a_new - a);         % residual 
    disp(['iteration: ' num2str(iter_ind) ' error Newton: ' num2str(max(r))])   
    
    % Update variables
    a = a_new;
    iter_ind = iter_ind + 1;
end; % while
toc

% Reconstruct approximate solution
y = zeros(N,1);
for j = 1:N    
    S = 0;
    for i = 1:N
        S = S + a(i) * p2(x(j),i,J);
    end
    y(j) = alpha1 + x(j) * beta1 + S;
end; % for

%% Exact solution
yexact = - tan(x);
% critical point pi/2 ~= 1.5708
x_zero1 = 0.5 * pi; 

%% Runge - Kutta method
[x, y1] = ode113('model0', x, [alpha1 beta1]);

%% Plot graphics
set(0,'defaulttextinterpreter','latex')
set(0,'defaultaxesfontname','times')
set(0,'defaultaxesfontsize',12)

oft = 0.01;

% fig:01
figure('color','w')
plot(x,yexact,'g',x,y,'rs',x,y1(:,1),'b.')
xlabel('$x$'); ylabel('$y$');
title(['J = ' num2str(J) ', ' '2M = ' num2str(N)])
legend('Exact','WHM', 'RGK')
axis([-oft 1+oft min(yexact)-oft max(yexact)+oft])

% Absolute errors
rRGK = abs(y1(:,1) - yexact');
rWHM = abs(y - yexact');
rRW = abs(y - y1(:,1));

% fig:02
figure('color','w')
plot(x,rRGK,'b.-',x,rWHM,'r.-',x,rRW,'ms-')
xlabel('$x$'); ylabel('Absolute Error');
title('Absolute Error: $\max|y_{numeric} - y_{analytic}|$')
legend('RGK','WHM','Between RGK and WHM',...
    'Location','northoutside','Orientation','horizontal')
axis([-oft 1+oft min([rRGK; rWHM; rRW])-oft max([rRGK; rWHM; rRW])+oft])

%% Disp Errors
disp(['error RGK: ' num2str(max(rRGK)) ' error WHM: ' num2str(max(rWHM)) ...
    ' error RW: ' num2str(max(rRW))])

%% Save data
if flag == 1    
    cd 'dat'
    
    table0 = [x yexact' y y1(:,1)];
    fid = fopen('table0.txt','w');
    fprintf(fid, '%6.2f %6.2f %6.2f %6.2f\n', table0');
    
    fclose(fid);
    disp('Saved.')
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Siraj-ul-Islam, Imran Aziz, Bozidar Sarler, "The numerical solution 
      of second-order boundary-value problems by collocation method with 
      the Haar wavelets,"Mathematical and Computer Modelling, Vol. 52, 
      No. 9-10, 1577-1590, 2012.

[2] Sahoo, Bishnupriya, "A study on solution of differential equations 
      using Haar wavelet collocation method, MSc thesis, 2012.
 

🌈4 Matlab代码实现

相关文章:

基于小波哈尔法(WHM)的一维非线性IVP测试问题的求解(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 💥1 概述 小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想&#xf…...

前端(Electron Nodejs)如何读取本地配置文件

使用electron封装了前端界面之后,最终打包为一个客户端(exe)。但是,最近项目组内做CS(c开发)的,想把所有的配置都放进安装目录的配置文件中(比如config.json)。这做法&am…...

没有 telnet 不能测试端口?容器化部署最佳的端口测试方式

写在前面 生产中遇到,整理笔记在容器中没有 telnet ,如何测试远程端口理解不足小伙伴帮忙指正 他的一生告诉我们,不能自爱就不能爱人,憎恨自己也必憎恨他人,最后也会像可恶的自私一样,使人变得极度孤独和悲…...

漏洞发现-BurpSuite插件-Fiora+Fastjson+Shiro

BurpSuite插件安装 插件:Fiora Fiora是LoL中的无双剑姬的名字,她善于发现对手防守弱点,实现精准打击。该项目为PoC框架nuclei提供图形界面,实现快速搜索、一键运行等功能,提升nuclei的使用体验。 该程序即可作为burp插…...

Elasticsearch-倒排索引

Elasticsearch和Lucene的关系 Lucene 是一个开源、免费、高性能、纯 Java 编写的全文检索引擎,可以算作是开源领域最好的全文检索工具包。ElasticSearch 是基于Lucene实现的一个分布式、可扩展、近实时性的高性能搜索与数据分析引擎。 Lucene索引层次结构 Lucene的…...

pagehelper与mybatis-plus冲突的解决办法

背景: springcloud项目开发新功能时因想使用mybatis-plus,原有功能只使用了mybatis,但在开发时发现某个公共模块使用了com.github.pagehelper,且很多模块都集成了该模块依赖(为了保证原有功能不发生问题,…...

解决使用Timer时出现Task already scheduled or cancelled异常的问题

在使用java.util.Timer和java.util.TimerTask执行定时任务时,如果在调用Timer的schedule或scheduleAtFixedRate方法时,报错如下: java.lang.IllegalStateException: Task already scheduled or cancelled 说明当前Timer对象已经执行结束或被取…...

P1175 后缀表达式

题意 传送门 P1175 表达式的转换 题解 编码运算符的优先级,线性复杂度将中缀表达式转换为后缀表达式。为了方便输出,可以用类似对顶栈的结构,初始时右侧栈为后缀表达式;对于每一步计算,右侧栈不断弹出数字到左侧栈&…...

【HashMap】49. 字母异位词分组

49. 字母异位词分组 解题思路 创建一个哈希容器 key是每一个字母异位词 排序之后的词 List是所有的字母异位词因为所有的字母异位词排序之后的结果都是一样的增强for循环遍历字符串数组将每一个字符串转换为字符数组因为字母异位词排序之后 都是一样的将排序之后的字符数组 转…...

golang实现多态

Go 通过接口来实现多态。在 Go 语言中,我们是隐式地实现接口。一个类型如果定义了接口所声明的全部方法,那它就实现了该接口。现在我们来看看,利用接口,Go 是如何实现多态的。 package mainimport "fmt"type Income in…...

formatter的用法,深拷贝, Object.assign 方法实战。

1. :formatter的用法 :formatter 接受一个函数作为参数&#xff0c;这个函数有三个参数&#xff1a;row&#xff0c;column 和 cellValue。row 是当前行的数据&#xff0c;column 是当前列的数据&#xff0c;cellValue 是当前单元格的值。 <el-table-column prop"SYS…...

Windows上安装和使用git到gitoschina和github上_亲测

Windows上安装和使用git到gitoschina和github上_亲测 git介绍与在windows上安装创建SSHkey在gitoschina使用 【git介绍与在windows上安装】 Git是一款免费、开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。 相关介绍可以参考 <百度百科>…...

MATLAB算法实战应用案例精讲-【深度学习】预训练模型GPTXLNet

目录 GPT 1. 介绍 1.1 GPT的动机 2. 模型结构 3. GPT训练过程 3.1 无监督的预训练...

Spring data JPA常用命令

简介 Spring Data JPA是Spring框架的一部分&#xff0c;它提供了一个简化的方式来与关系型数据库进行交互。JPA代表Java持久化API&#xff0c;它是Java EE规范中定义的一种对象关系映射&#xff08;ORM&#xff09;标准。Spring Data JPA在JPA的基础上提供了更高级的抽象&…...

Excel的使用

1.EXCEL诞生的意义 1.1 找到想要的数据 1.2 提升输入速度 2.数据分析与可视化操作 目的是提升数据的价值和意义 3.EXCEL使用的内在意义和外在形式 4.EXCEL的价值 4.1 解读及挖掘数据价值 4.2 协作板块 4.3 展示专业度 4.4 共享文档内容 5.人的需求》》软件功能...

大数据课程D4——hadoop的MapReduce

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解MapReduce的作用和特点; ⚪ 掌握MapReduce的组件; ⚪ 掌握MapReduce的Shuffle; ⚪ 掌握MapReduce的小文件问题; ⚪ 掌握MapReduce的压缩机制; ⚪ 掌握MapReduce的推测执行机制…...

java策略模式

在Java中&#xff0c;策略模式&#xff08;Strategy Design Pattern&#xff09;用于定义一系列算法&#xff0c;并将每个算法封装成单独的类&#xff0c;使得它们可以互相替换&#xff0c;让客户端在使用算法时不需要知道具体的实现细节。策略模式是一种行为型设计模式&#x…...

Vue2封装自定义全局Loading组件

前言 在开发的过程中&#xff0c;点击提交按钮&#xff0c;或者是一些其它场景总会遇到Loading加载框&#xff0c;PC的一些UI库也没有这样的加载框&#xff0c;无法满足业务需求&#xff0c;因此可以自己自定义一个&#xff0c;实现过程如下。 效果图 如何封装&#xff1f; 第…...

docker 搭建jenkins

1、拉取镜像 docker pull jenkins/jenkins:2.4162、创建文件夹 mkdir -p /home/jenkins_mount chmod 777 /home/jenkins_mount3、运行并构建容器 docker run --restartalways -d -p 10240:8080 -p 10241:50000 -v /home/jenkins_mount:/var/jenkins_home -v /etc/localtime:…...

【Docker】Docker 部署 Mysql 并设置数据持久化

文章目录 1. Docker持久化MySQL2. 测试删除MySQL容器后新建容器&#xff0c;数据还在不在3. 参考资料 我们使用Docker的目的就是图它方便下载部署&#xff0c;不用常规的经历下载、配置、安装等等繁琐的步骤。但是与此同时Docker也存在一些缺点&#xff0c;像删除容器后数据就都…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...