当前位置: 首页 > news >正文

基于小波哈尔法(WHM)的一维非线性IVP测试问题的求解(Matlab代码实现)

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想,通过将原始问题转化为小波空间中的线性问题,然后进行求解。以下是一维非线性IVP测试问题的求解步骤:

1. 确定目标问题:首先,确定你要解决的一维非线性IVP测试问题。这可能涉及到一个非线性的微分方程和一些边界条件。

2. 小波基函数选择:选择适当的小波基函数来表示问题中的解。小波基函数应该具有良好的局部特性和适应性,以便更好地表示原始问题。常见的小波基函数包括Haar小波、Daubechies小波和Symlet小波等。

3. 建立小波变换:通过将问题转化为小波空间中的线性问题来建立小波变换。这可以通过将解函数和微分方程表示为小波基函数的线性组合来实现。

4. 线性方程求解:将小波变换应用于原始问题后,将其转化为一组线性方程。通过求解这组线性方程来获得小波系数,从而得到原始问题的近似解。

5. 逆小波变换:将得到的小波系数和小波基函数的逆变换应用于小波空间,将解转换回原始空间。这将给出原始问题的近似解。

6. 结果评估:评估求解结果的准确性和收敛性。可以比较近似解与真实解之间的差异,并检查所采用的小波基函数的适用性。

需要注意的是,小波哈尔法(WHM)是一个高级的数值方法,需要掌握小波分析和线性代数的基础知识。在实施过程中,还需进行适当的数值技巧,如数值积分和线性方程求解等。

📚2 运行结果

 

部分代码:

% step 1
% collocation points
J = 3;                              % level of decomposition
N = 2^(J + 1); % N = 2M             % number of basis functions
j = 1:N;                            % index of grid points
x = (j - 0.5) ./ N;                 % grid points

% step 2
% initial values
alpha1 = 0;                         % initial value of a function
beta1  = - 1;                       % initial value of the first derivative
a1     = beta1 - alpha1;

% step 3
% Newton solver
W = zeros(N,N);
f = zeros([N 1]);
a = zeros([N 1]);

epsilon = 1e-4;
r = ones([N 1]);

iter_ind = 0;
tic
while max(r) > epsilon   
    for j = 1:N
        % f(x) computation 
        % H, P1, P2 computation
        H = 0;               
        P1 = 0;
        P2 = 0;
        for i = 1:N
            H  = H  + a(i) * haar(x(j), i, J);
            P1 = P1 + a(i) * p1(x(j), i, J);
            P2 = P2 + a(i) * p2(x(j), i, J);            
        end;
        
        f(j) = 2 * (alpha1 + beta1 * x(j) + P2) * ...
            (beta1 + P1) + H;  
        
        
        % W(x) matrix computation        
        for k = 1:N
            W(j,k) = 2 * p2(x(j),k,J) * (beta1 + P1) + ...
                2 * (alpha1 + beta1 * x(j) + P2) * p1(x(j),k,J) + haar(x(j),k,J);            
        end; % for k
    end; % for j
    
    a_new = W \ (W*a - f);      % linear system solution
    r = abs(a_new - a);         % residual 
    disp(['iteration: ' num2str(iter_ind) ' error Newton: ' num2str(max(r))])   
    
    % Update variables
    a = a_new;
    iter_ind = iter_ind + 1;
end; % while
toc

% Reconstruct approximate solution
y = zeros(N,1);
for j = 1:N    
    S = 0;
    for i = 1:N
        S = S + a(i) * p2(x(j),i,J);
    end
    y(j) = alpha1 + x(j) * beta1 + S;
end; % for

%% Exact solution
yexact = - tan(x);
% critical point pi/2 ~= 1.5708
x_zero1 = 0.5 * pi; 

%% Runge - Kutta method
[x, y1] = ode113('model0', x, [alpha1 beta1]);

%% Plot graphics
set(0,'defaulttextinterpreter','latex')
set(0,'defaultaxesfontname','times')
set(0,'defaultaxesfontsize',12)

oft = 0.01;

% fig:01
figure('color','w')
plot(x,yexact,'g',x,y,'rs',x,y1(:,1),'b.')
xlabel('$x$'); ylabel('$y$');
title(['J = ' num2str(J) ', ' '2M = ' num2str(N)])
legend('Exact','WHM', 'RGK')
axis([-oft 1+oft min(yexact)-oft max(yexact)+oft])

% Absolute errors
rRGK = abs(y1(:,1) - yexact');
rWHM = abs(y - yexact');
rRW = abs(y - y1(:,1));

% fig:02
figure('color','w')
plot(x,rRGK,'b.-',x,rWHM,'r.-',x,rRW,'ms-')
xlabel('$x$'); ylabel('Absolute Error');
title('Absolute Error: $\max|y_{numeric} - y_{analytic}|$')
legend('RGK','WHM','Between RGK and WHM',...
    'Location','northoutside','Orientation','horizontal')
axis([-oft 1+oft min([rRGK; rWHM; rRW])-oft max([rRGK; rWHM; rRW])+oft])

%% Disp Errors
disp(['error RGK: ' num2str(max(rRGK)) ' error WHM: ' num2str(max(rWHM)) ...
    ' error RW: ' num2str(max(rRW))])

%% Save data
if flag == 1    
    cd 'dat'
    
    table0 = [x yexact' y y1(:,1)];
    fid = fopen('table0.txt','w');
    fprintf(fid, '%6.2f %6.2f %6.2f %6.2f\n', table0');
    
    fclose(fid);
    disp('Saved.')
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Siraj-ul-Islam, Imran Aziz, Bozidar Sarler, "The numerical solution 
      of second-order boundary-value problems by collocation method with 
      the Haar wavelets,"Mathematical and Computer Modelling, Vol. 52, 
      No. 9-10, 1577-1590, 2012.

[2] Sahoo, Bishnupriya, "A study on solution of differential equations 
      using Haar wavelet collocation method, MSc thesis, 2012.
 

🌈4 Matlab代码实现

相关文章:

基于小波哈尔法(WHM)的一维非线性IVP测试问题的求解(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 💥1 概述 小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想&#xf…...

前端(Electron Nodejs)如何读取本地配置文件

使用electron封装了前端界面之后,最终打包为一个客户端(exe)。但是,最近项目组内做CS(c开发)的,想把所有的配置都放进安装目录的配置文件中(比如config.json)。这做法&am…...

没有 telnet 不能测试端口?容器化部署最佳的端口测试方式

写在前面 生产中遇到,整理笔记在容器中没有 telnet ,如何测试远程端口理解不足小伙伴帮忙指正 他的一生告诉我们,不能自爱就不能爱人,憎恨自己也必憎恨他人,最后也会像可恶的自私一样,使人变得极度孤独和悲…...

漏洞发现-BurpSuite插件-Fiora+Fastjson+Shiro

BurpSuite插件安装 插件:Fiora Fiora是LoL中的无双剑姬的名字,她善于发现对手防守弱点,实现精准打击。该项目为PoC框架nuclei提供图形界面,实现快速搜索、一键运行等功能,提升nuclei的使用体验。 该程序即可作为burp插…...

Elasticsearch-倒排索引

Elasticsearch和Lucene的关系 Lucene 是一个开源、免费、高性能、纯 Java 编写的全文检索引擎,可以算作是开源领域最好的全文检索工具包。ElasticSearch 是基于Lucene实现的一个分布式、可扩展、近实时性的高性能搜索与数据分析引擎。 Lucene索引层次结构 Lucene的…...

pagehelper与mybatis-plus冲突的解决办法

背景: springcloud项目开发新功能时因想使用mybatis-plus,原有功能只使用了mybatis,但在开发时发现某个公共模块使用了com.github.pagehelper,且很多模块都集成了该模块依赖(为了保证原有功能不发生问题,…...

解决使用Timer时出现Task already scheduled or cancelled异常的问题

在使用java.util.Timer和java.util.TimerTask执行定时任务时,如果在调用Timer的schedule或scheduleAtFixedRate方法时,报错如下: java.lang.IllegalStateException: Task already scheduled or cancelled 说明当前Timer对象已经执行结束或被取…...

P1175 后缀表达式

题意 传送门 P1175 表达式的转换 题解 编码运算符的优先级,线性复杂度将中缀表达式转换为后缀表达式。为了方便输出,可以用类似对顶栈的结构,初始时右侧栈为后缀表达式;对于每一步计算,右侧栈不断弹出数字到左侧栈&…...

【HashMap】49. 字母异位词分组

49. 字母异位词分组 解题思路 创建一个哈希容器 key是每一个字母异位词 排序之后的词 List是所有的字母异位词因为所有的字母异位词排序之后的结果都是一样的增强for循环遍历字符串数组将每一个字符串转换为字符数组因为字母异位词排序之后 都是一样的将排序之后的字符数组 转…...

golang实现多态

Go 通过接口来实现多态。在 Go 语言中,我们是隐式地实现接口。一个类型如果定义了接口所声明的全部方法,那它就实现了该接口。现在我们来看看,利用接口,Go 是如何实现多态的。 package mainimport "fmt"type Income in…...

formatter的用法,深拷贝, Object.assign 方法实战。

1. :formatter的用法 :formatter 接受一个函数作为参数&#xff0c;这个函数有三个参数&#xff1a;row&#xff0c;column 和 cellValue。row 是当前行的数据&#xff0c;column 是当前列的数据&#xff0c;cellValue 是当前单元格的值。 <el-table-column prop"SYS…...

Windows上安装和使用git到gitoschina和github上_亲测

Windows上安装和使用git到gitoschina和github上_亲测 git介绍与在windows上安装创建SSHkey在gitoschina使用 【git介绍与在windows上安装】 Git是一款免费、开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。 相关介绍可以参考 <百度百科>…...

MATLAB算法实战应用案例精讲-【深度学习】预训练模型GPTXLNet

目录 GPT 1. 介绍 1.1 GPT的动机 2. 模型结构 3. GPT训练过程 3.1 无监督的预训练...

Spring data JPA常用命令

简介 Spring Data JPA是Spring框架的一部分&#xff0c;它提供了一个简化的方式来与关系型数据库进行交互。JPA代表Java持久化API&#xff0c;它是Java EE规范中定义的一种对象关系映射&#xff08;ORM&#xff09;标准。Spring Data JPA在JPA的基础上提供了更高级的抽象&…...

Excel的使用

1.EXCEL诞生的意义 1.1 找到想要的数据 1.2 提升输入速度 2.数据分析与可视化操作 目的是提升数据的价值和意义 3.EXCEL使用的内在意义和外在形式 4.EXCEL的价值 4.1 解读及挖掘数据价值 4.2 协作板块 4.3 展示专业度 4.4 共享文档内容 5.人的需求》》软件功能...

大数据课程D4——hadoop的MapReduce

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解MapReduce的作用和特点; ⚪ 掌握MapReduce的组件; ⚪ 掌握MapReduce的Shuffle; ⚪ 掌握MapReduce的小文件问题; ⚪ 掌握MapReduce的压缩机制; ⚪ 掌握MapReduce的推测执行机制…...

java策略模式

在Java中&#xff0c;策略模式&#xff08;Strategy Design Pattern&#xff09;用于定义一系列算法&#xff0c;并将每个算法封装成单独的类&#xff0c;使得它们可以互相替换&#xff0c;让客户端在使用算法时不需要知道具体的实现细节。策略模式是一种行为型设计模式&#x…...

Vue2封装自定义全局Loading组件

前言 在开发的过程中&#xff0c;点击提交按钮&#xff0c;或者是一些其它场景总会遇到Loading加载框&#xff0c;PC的一些UI库也没有这样的加载框&#xff0c;无法满足业务需求&#xff0c;因此可以自己自定义一个&#xff0c;实现过程如下。 效果图 如何封装&#xff1f; 第…...

docker 搭建jenkins

1、拉取镜像 docker pull jenkins/jenkins:2.4162、创建文件夹 mkdir -p /home/jenkins_mount chmod 777 /home/jenkins_mount3、运行并构建容器 docker run --restartalways -d -p 10240:8080 -p 10241:50000 -v /home/jenkins_mount:/var/jenkins_home -v /etc/localtime:…...

【Docker】Docker 部署 Mysql 并设置数据持久化

文章目录 1. Docker持久化MySQL2. 测试删除MySQL容器后新建容器&#xff0c;数据还在不在3. 参考资料 我们使用Docker的目的就是图它方便下载部署&#xff0c;不用常规的经历下载、配置、安装等等繁琐的步骤。但是与此同时Docker也存在一些缺点&#xff0c;像删除容器后数据就都…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...