齐次线性方程组及python求解
齐次线性方程组的概念
齐次线性方程组是指所有常数项都为零的线性方程组,其一般形式为:
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 a11x1+a12x2+⋯+a1nxn=0
a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 a21x1+a22x2+⋯+a2nxn=0
⋮ \vdots ⋮
a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 am1x1+am2x2+⋯+amnxn=0
其中, a i j a_{ij} aij 是系数, x i x_i xi 是未知数,方程组中的常数项都是0。
求解方法
- 高斯消元法:通过行变换将系数矩阵转换为行最简形式,从而找到方程组的解。高斯消元法是一种求解线性方程组的算法,它通过对方程组的增广矩阵进行行变换,将矩阵转换为行阶梯形或行最简形,从而找到方程组的解。对于齐次线性方程组,由于常数项都是0,所以增广矩阵就是系数矩阵。
以下是使用高斯消元法求解齐次线性方程组的步骤:
写出系数矩阵:将方程组的系数写成矩阵形式 A A A。
进行行变换:通过以下三种基本行变换将矩阵转换为行阶梯形或行最简形:
- 交换两行。
- 将某一行乘以一个非零常数。
- 将某一行加上另一行的倍数。
找到解:当矩阵转换为行最简形时,可以很容易地读出方程组的解。
考虑以下齐次线性方程组:
x 1 + 2 x 2 + 3 x 3 = 0 x_1 + 2x_2 + 3x_3 = 0 x1+2x2+3x3=0
4 x 1 + 5 x 2 + 6 x 3 = 0 4x_1 + 5x_2 + 6x_3 = 0 4x1+5x2+6x3=0
7 x 1 + 8 x 2 + 9 x 3 = 0 7x_1 + 8x_2 + 9x_3 = 0 7x1+8x2+9x3=0
系数矩阵 A A A 为:
A = ( 1 2 3 4 5 6 7 8 9 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} A= 147258369
我们可以通过高斯消元法将这个矩阵转换为行最简形。以下是具体的行变换步骤:
从第二行减去第一行的4倍:
R 2 ← R 2 − 4 R 1 R_2 \leftarrow R_2 - 4R_1 R2←R2−4R1
( 1 2 3 0 − 3 − 6 7 8 9 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{pmatrix} 1072−383−69
从第三行减去第一行的7倍:
R 3 ← R 3 − 7 R 1 R_3 \leftarrow R_3 - 7R_1 R3←R3−7R1
( 1 2 3 0 − 3 − 6 0 − 6 − 12 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} 1002−3−63−6−12
将第二行除以-3:
R 2 ← R 2 − 3 R_2 \leftarrow \frac{R_2}{-3} R2←−3R2
( 1 2 3 0 1 2 0 − 6 − 12 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -6 & -12 \end{pmatrix} 10021−632−12
从第三行加上第二行的6倍:
R 3 ← R 3 + 6 R 2 R_3 \leftarrow R_3 + 6R_2 R3←R3+6R2
( 1 2 3 0 1 2 0 0 0 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} 100210320
从第一行减去第二行的2倍:
R 1 ← R 1 − 2 R 2 R_1 \leftarrow R_1 - 2R_2 R1←R1−2R2
( 1 0 − 1 0 1 2 0 0 0 ) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} 100010−120
现在,矩阵已经转换为行最简形。从这个矩阵中,我们可以读出方程组的解:
x 1 − x 3 = 0 x_1 - x_3 = 0 x1−x3=0
x 2 + 2 x 3 = 0 x_2 + 2x_3 = 0 x2+2x3=0
设 x 3 = t x_3 = t x3=t,则 x 1 = t x_1 = t x1=t 和 x 2 = − 2 t x_2 = -2t x2=−2t。因此,方程组的解为:
( x 1 x 2 x 3 ) = t ( 1 − 2 1 ) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} x1x2x3 =t 1−21
其中 t t t 是任意实数。这就是方程组的非零解。
- 矩阵的零空间:求解系数矩阵的零空间,即找到所有满足 A x = 0 Ax = 0 Ax=0 的向量 x x x。
要使用矩阵的零空间法求解齐次线性方程组,我们可以遵循以下步骤,
构造系数矩阵:将齐次线性方程组表示为矩阵形式 A x = 0 Ax = 0 Ax=0,其中 A A A 是系数矩阵。
计算零空间:使用线性代数工具来计算系数矩阵 A A A 的零空间,即找到所有满足 A x = 0 Ax = 0 Ax=0 的向量 x x x。
矩阵 A A A 的零空间是所有满足 A x = 0 Ax = 0 Ax=0 的向量 x x x 组成的集合,可以用 Null ( A ) \text{Null}(A) Null(A)表示。
以下是使用Python的NumPy库来求解齐次线性方程组的零空间的代码示例:
from sympy import Matrix# 定义系数矩阵A
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 计算矩阵A的零空间
null_space = A.nullspace()# 打印非零解
print("非零解为:")
for solution in null_space:print(solution)
非零解为:
Matrix([[1], [-2], [1]])
3.特征值和特征向量:对于某些特殊类型的齐次线性方程组,可以通过求解特征值和特征向量来找到解。
计算特征值:求解特征方程 det ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(A−λI)=0 来找到矩阵 A A A 的所有特征值。
找到特征值为0的特征向量:对于特征值 λ = 0 \lambda = 0 λ=0,求解方程 A x = 0 Ax = 0 Ax=0 来找到对应的特征向量,这些特征向量构成了齐次方程组的解空间。
以下是使用Python和NumPy库来实现这个过程的代码:
import numpy as npdef find_eigenvectors(A):# 计算特征值和特征向量eigenvalues, eigenvectors = np.linalg.eig(A)# 找到特征值为0的特征向量zero_eigenvectors = eigenvectors[:, np.isclose(eigenvalues, 0)]return zero_eigenvectors# 定义系数矩阵A
A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 找到特征值为0的特征向量
zero_eigenvectors = find_eigenvectors(A)print("特征值为0的特征向量(解空间的基)为:")
print(zero_eigenvectors)
特征值为0的特征向量(解空间的基)为:
[[ 0.40824829]
[-0.81649658]
[ 0.40824829]]
请注意,这个方法只有在矩阵 A A A 有0特征值时才适用。如果矩阵 A A A没有0特征值,那么齐次线性方程组只有平凡解(即所有变量都为0的解)。此外,这个方法可能不会返回所有可能的解,因为特征值和特征向量方法通常用于描述矩阵的特定性质,而不是直接求解齐次方程组。对于齐次方程组,更直接的方法是使用高斯消元法或者计算矩阵的零空间。
应用
- 线性代数:在求解线性代数问题时,经常需要求解齐次线性方程组,例如求解矩阵的零空间、特征值和特征向量等。
- 控制理论:在控制理论中,齐次线性方程组可以用来描述系统的稳定性。
- 计算机图形学:在计算机图形学中,齐次线性方程组可以用来描述三维空间中的变换。
- 经济学:在经济学中,齐次线性方程组可以用来描述经济模型中的平衡关系。
相关文章:
齐次线性方程组及python求解
齐次线性方程组的概念 齐次线性方程组是指所有常数项都为零的线性方程组,其一般形式为: a 11 x 1 a 12 x 2 ⋯ a 1 n x n 0 a_{11}x_1 a_{12}x_2 \cdots a_{1n}x_n 0 a11x1a12x2⋯a1nxn0 a 21 x 1 a 22 x 2 ⋯ a 2 n x n 0 a_…...
基于 Qt / HTTP/JSON 的智能天气预报系统测试报告
目录 一、项目概述 1.1项目背景 1.2项目目标 二、功能需求 2.1 用户界面功能 2.2 后台功能 三、技术选择 3.1 开发框架与工具 3.2 第三方 API 四、UI设计 4.1界面展示 4.2stylesheet样式 五、代码实现 1.构造函数 2.网络请求响应处理函数 3.处理json数据 4.更新…...
基于Real-Sim-Real循环框架的机器人策略迁移方法
编辑:陈萍萍的公主一点人工一点智能 基于Real-Sim-Real循环框架的机器人策略迁移方法本文通过严谨的理论推导和系统的实验验证,构建了一个具有普适性的sim-to-real迁移框架。https://mp.weixin.qq.com/s/cRRI2VYHYQUUhHhP3bw4lA 01 摘要 本文提出的Rea…...
Spring Boot 集成实战:AI 工具如何自动生成完整微服务模块
在数字化转型的浪潮中,开发效率和质量是企业竞争力的关键要素。飞算 JavaAI 作为一款创新的 AI 工具,能在 Spring Boot 开发中,自动生成完整微服务模块,极大提升开发效率。下面,我们就详细介绍如何借助飞算 JavaAI&…...
Vue React
Vue 的源码主要分为以下几个部分: 主要涉及 响应式、虚拟 DOM、组件系统、编译器、运行时。 ├── packages/ │ ├── compiler-core/ # 编译器核心 │ ├── compiler-sfc/ # 处理 .vue 单文件组件 │ ├── compiler-dom/ # 处理 DOM 相关…...
Java高频面试之并发编程-01
hello啊,各位观众姥爷们!!!本baby今天来报道了!哈哈哈哈哈嗝🐶 面试官:并行跟并发有什么区别? 并发 vs 并行:核心区别与场景 1. 定义对比 维度并发(Concu…...
(Kotlin)Android 高效底部导航方案:基于预定义 Menu 和 ViewPager2 的 Fragment 动态绑定实现
支持预定义 Menu 并绑定 Fragment,同时保留动态添加 Tab 的能力 BottomTabHelper.kt package smartconnection.com.smartconnect.home.utilimport android.content.Context import android.util.SparseArray import androidx.annotation.IdRes import androidx.fra…...
2024年零知识证明(ZK)研究进展
Sumcheck 整个领域正在转向更多地依赖于 Sumcheck Protocol Sumcheck是用于验证多项式承诺的协议,常用于零知识证明(ZKP)中,尤其是在可验证计算和扩展性上。它的主要目的是通过对多项式进行分段检查,从而保证某个多项…...
AI 驱动的安全分析的价值是什么?
作者:来自 Elastic Riya Juneja, Alyssa VanNice 与 Enterprise Strategy Group 一起量化经济影响 安全行业十分复杂,变化速度极快。攻击面、利益相关者需求、对手战术以及你使用的工具都在不断演变,导致许多安全团队不确定自己是否已做好准备…...
目标检测YOLO实战应用案例100讲-基于孤立森林算法的高光谱遥感图像异常目标检测(续)
目录 3.4 实验结果与分析 3.4.1 数据集介绍 3.4.2 实验参数分析 3.4.3 实验结果评价与讨论 基于高维孤立森林算法的高光谱图像异常检测 4.1 引言 4.2 基于高维孤立森林算法的异常检测模型 4.2.1 面向高维数据的改进策略 4.2.2 基于光谱有效信息率和目标-背景分离…...
flutter框架中文文档,android智能手机编程答案
RecyclerView优化全攻略:从数据处理到性能提升 字节跳动四面有三面都问了这个问题,在此做了整理,希望可以帮助到大家,欢迎查漏补缺。 数据处理和视图加载分离 我们知道,从远端拉取数据肯定是要放在异步的࿰…...
AWE 2025:当AI科技遇见智能家居
3月20日,以“AI科技、AI生活”为主题的AWE2025(中国家电及消费电子博览会)在上海新国际博览中心开幕。作为全球家电行业风向标,本届展会最大的亮点莫过于健康理念在家电领域的全面渗透。从食材保鲜到空气净化,从衣物清…...
Laraver SQL日志 服务开发
Laravel 项目运行中,有时候需要查看sql语句,分析sql运行的耗时,sql语句的复杂程度分析等等 总之,sql的执行在项目中,非常关键,接下来将说明在laravel 中 配置一个sql日志记录服务。 开发思路:…...
NG-ZORRO中tree组件的getCheckedNodeList怎么使用
在 NG-ZORRO(Ant Design for Angular) 的 Tree 组件 中,getCheckedNodeList 方法用于获取当前选中的节点列表(包括半选状态节点)。以下是具体用法和示例: 基本用法 首先,确保你已通过 ViewChil…...
win10之mysql server 8.0.41安装
一 mysql server 下载 官网下载地址页面 https://dev.mysql.com/downloads/mysql/二 免装版使用步骤 1 解压 下载完成后,解压文件夹,如下所示: 2 执行安装命令 D:\soft\mysql\mysql-8.0.41-winx64\mysql-8.0.41-winx64\bin>mysqld --install Service successfully in…...
蓝桥杯专项复习——二分
目录 二分查找、二分答案基础知识 二分查找模版 【模版题】数的范围 借教室 二分查找、二分答案基础知识 二分查找模版 【模版题】数的范围 输入样例 6 3 1 2 2 3 3 4 3 4 5输出样例 3 4 5 5 -1 -1 思路: 对应两个模版,起始位置是对应第一个模版…...
oracle中java类的使用
方式一: 编写一个简单的java类 vi OracleJavaDemo.java public class OracleJavaDemo { public static String processData(String input) { return "Processed: " input; } } 编译 javac OracleJavaDemo.java 生成OracleJavaDemo…...
高并发内存池(一):项目介绍和Thread Cache实现
前言:本文将要介绍的高并发内存池,它的原型是Google的⼀个开源项⽬tcmalloc,全称Thread-Caching Malloc,近一个月我将以学习为目的来模拟实现一个精简版的高并发内存池,并对核心技术分块进行精细剖析,分享在…...
MySQL与Redis数据一致性保障方案详解
前言 在现代分布式系统中,MySQL和Redis的结合使用非常普遍。MySQL作为关系型数据库负责持久化存储,而Redis则作为高性能缓存层提升系统的响应速度。然而,在这种架构下,如何保证MySQL与Redis之间的数据一致性是一个重要的挑战。本…...
“钉耙编程”2025春季联赛(2)题解(更新中)
1001 学位运算导致的 1002 学历史导致的 // Problem: 学历史导致的 // Contest: HDOJ // URL: https://acm.hdu.edu.cn/contest/problem?cid1151&pid1002 // Memory Limit: 524288 MB // Time Limit: 1000 ms // // Powered by CP Editor (https://cpeditor.org)#include …...
C#高级:启动、中止一个指定路径的exe程序
一、启动一个exe class Program {static void Main(string[] args){string exePath "D:\测试\Test.exe";// 修改为你要运行的exe路径StartProcess(exePath);}private static bool StartProcess(string exePath){// 创建一个 ProcessStartInfo 对象来配置进程启动参…...
【NumPy】1. 前言安装
0.前言 需要具备[[Python]]基础 定义: NumPy 通常与 [[SciPy]](Scientific Python)和 [[Matplotlib]](绘图库)一起使用, 这种组合广泛用于替代 [[MatLab]],是一个强大的科学计算环境,有助于我…...
双向链表的理解
背景 代码中经常会出现双向链表,对于双向链表的插入和删除有对应的API函数接口,但直观的图表更容易理解,所以本文会对rt-thread内核代码中提供的双向链表的一些API函数操作进行绘图,方便后续随时查看。 代码块 rt-thread中提供…...
基于Spring Boot的家庭理财系统app的设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
【测试】每日3道面试题 3/31
长期更新,建议关注收藏点赞。 单元测试策略有哪些,主要内容。 白盒测试黑盒测试基于异常和边界的测试 主要内容:测试用例设计、执行、结果分析、自动化beta测试和alpha测试主要区别 主要区别:测试环境测试者 alphabeta时间先后测…...
Go 语言常见错误
代码及工程组织 1、意外的变量隐藏 示例代码: package mainimport ("fmt" )var FunTester "全局变量 FunTester"func main() {FunTester : "局部变量 FunTester"fmt.Println(FunTester) }func showGlobal() {fmt.Println(FunTest…...
216. 组合总和 III 回溯
目录 问题描述 解决思路 关键点 代码实现 代码解析 1. 初始化结果和路径 2. 深度优先搜索(DFS) 3. 遍历候选数字 4. 递归与回溯 示例分析 复杂度与优化 回溯算法三部曲 1. 路径选择:记录当前路径 2. 递归探索:进入下…...
【Python 算法】动态规划
本博客笔记内容来源于灵神,视频链接如下:https://www.bilibili.com/video/BV16Y411v7Y6?vd_source7414087e971fef9431117e44d8ba61a7&spm_id_from333.788.player.switch 01背包 计算了f[i1],f[i]就没用了,相当于每时每刻只有…...
nginx的自定义错误页面
正常访问一个不存在的页面是会报404这个错误 我们可以自定义错误页面 error_page 404 /40x.html 然后调用location 最后创建文件 写入你想写的内容 最后实验成功 注意在nginx的配置文件里,注意在加分号 在写完配置时...
制作service列表并打印出来
制作service列表并打印出来 在Linux中,服务(Service)是指常驻在内存中的进程,这些进程通常监听某个端口,等待其他程序的请求。服务也被称为守护进程(Daemon),它们提供了系统所需的各…...
