当前位置: 首页 > article >正文

Unity中 JobSystem使用整理

Unity 的JobSystem允许创建多线程代码,以便应用程序可以使用所有可用的 CPU 内核来执行代码,这提供了更高的性能,因为您的应用程序可以更高效地使用运行它的所有 CPU 内核的容量,而不是在一个 CPU 内核上运行所有代码。
可以单独使用JobSystem,为了提高性能,可以和Burst 编译器一块使用,Burst 编译器改进了代码生成,从而提高了移动设备的性能并减少了电池消耗。
还可以将JobSystem与 Unity 的实体组件系统结合使用,以创建高性能的面向数据的代码。

优势:

1.多线程并行计算:利用多核CPU提升性能。
​2.无GC分配:使用 Native 容器避免托管堆分配。
​3.Burst 编译优化:生成高效原生代码(性能提升5-10倍)。

使用:

1.安装

通过Package Manager添加

通过Git URL地址搜索Job System包  
com.unity.jobs:Job System 的核心功能包。

搜索到Jobs包后点击右下角Import

2.创建第一个JobSystem例子
 

未完待续。。。

参考链接:

什么是作业系统? - Unity 手册

ArtStation - Unity Job System in Practice. How we increased FPS from 15 to 70 in our game

相关文章:

Unity中 JobSystem使用整理

Unity 的JobSystem允许创建多线程代码,以便应用程序可以使用所有可用的 CPU 内核来执行代码,这提供了更高的性能,因为您的应用程序可以更高效地使用运行它的所有 CPU 内核的容量,而不是在一个 CPU 内核上运行所有代码。 可以单独使…...

洛谷 P1032 [NOIP 2002 提高组] 字串变换

【题目链接】 洛谷 P1032 [NOIP 2002 提高组] 字串变换 【题目考点】 1. 广搜 2. 双向广搜 【解题思路】 解空间树中每个结点包含的状态为一个字符串s,该结点的子结点中的字符串为字符串s通过变换规则可以变化而成的字符串。求从起始字符串变换为最终字符串的…...

Python Websockets库深度解析:构建高效的实时Web应用

引言 在现代Web开发中,实时通信已经成为许多应用的核心需求。无论是聊天应用、在线游戏、金融交易平台还是协作工具,都需要服务器和客户端之间建立持久、双向的通信通道。传统的HTTP协议由于其请求-响应模式,无法有效满足这些实时交互需求。…...

42.C++11-右值引用与移动语义/完美转发

⭐上篇文章:41.C哈希6(哈希切割/分片/位图/布隆过滤器与海量数据处理场景)-CSDN博客 ⭐本篇代码:c学习/22.C11新特性的使用 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) ⭐标⭐是比较重要的部分 目录 一. 右值引用…...

LeetCode题二:判断回文

查阅资料我得到的结果远没有大佬们的做法更省时间&#xff0c;而且还很麻烦 我的代码(完整)&#xff1a; class Solution:def isPalindrome(self, x: int) -> bool:# 若 x 为负数&#xff0c;由于负数不可能是回文数&#xff0c;直接返回 Falseif x < 0:return False# …...

[王阳明代数讲义]琴语言类型系统工程特性

琴语言类型系统工程特性 层展物理学组织实务与艺术与琴生生.物机.械科.技工.业研究.所软凝聚态物理开发工具包社会科学气质砥砺学人生意气场社群成员魅力场与心气微积分社会关系力学 意气实体过程图论信息编码&#xff0c;如来码导引 注意力机制道装Transformer架构的发展标度律…...

问题:tomcat下部署eureka双重路径

开发时在tomcat下启动eureka服务 客户端注册时需要地址需要注意 http://localhost:8761/eureka/eureka 后面一个eureka与tomcat context-path有关系按实际配置替换 如果不想要两个path可将tomcat context-path写为 / 建议使用 / 避免出现其他问题 如图...

JUC系列JMM学习之随笔

JUC: JUC 是 Java 并发编程的核心工具包,全称为 Java Util Concurrent,是 java.util.concurrent 包及其子包的简称。它提供了一套强大且高效的并发编程工具,用于简化多线程开发并提高性能。 CPU核心数和线程数的关系:1核处理1线程(同一时间单次) CPU内核结构: 工作内…...

React(九)React Hooks

初识Hook 我们到底为什么需要hook那? 函数组件类组件存在问题 函数组件存在的问题&#xff1a; import React, { PureComponent } from reactfunction HelloWorld2(props) {let message"Hello world"// 函数式组件存在的缺陷&#xff1a;// 1.修改message之后&a…...

PyTorch嵌入层(nn.Embedding)

在 PyTorch 中&#xff0c;nn.Embedding 层&#xff08;即 model.user_embedding&#xff09;除了 .weight 这个核心属性外&#xff0c;还有其他属性和方法。以下是完整的解析&#xff1a; 1. 主要属性 (1) weight&#xff08;核心参数&#xff09; 作用&#xff1a;存储所有…...

AIGC7——AIGC驱动的视听内容定制化革命:从Sora到商业化落地

引言&#xff1a;个性化视听时代的到来 2024年&#xff0c;OpenAI发布视频生成模型Sora&#xff0c;可生成60秒高清视频&#xff1b;中国团队推出的Vidu模型实现16秒镜头连贯生成。这些突破标志着AIGC正式进入高质量视听内容定制化阶段。据Gartner预测&#xff0c;到2027年&am…...

接上文,SpringBoot的线程池配置以及JVM监控

接上篇文章&#xff0c; 拿SpringBoot举个例 1.1 默认线程池的隐患 Spring Boot的Async默认使用SimpleAsyncTaskExecutor&#xff08;无复用线程&#xff09;&#xff0c;频繁创建/销毁线程易引发性能问题。 1.2 自定义线程池配置 Configuration EnableAsync public class A…...

《AI大模型应知应会100篇》加餐篇:LlamaIndex 与 LangChain 的无缝集成

加餐篇&#xff1a;LlamaIndex 与 LangChain 的无缝集成 问题背景&#xff1a;在实际应用中&#xff0c;开发者常常需要结合多个框架的优势。例如&#xff0c;使用 LangChain 管理复杂的业务逻辑链&#xff0c;同时利用 LlamaIndex 的高效索引和检索能力构建知识库。本文在基于…...

部署大模型实战:如何巧妙权衡效果、成本与延迟?

目录 部署大模型实战&#xff1a;如何巧妙权衡效果、成本与延迟&#xff1f; 一、为什么要进行权衡&#xff1f; 二、权衡的三个关键维度 三、如何进行有效权衡&#xff1f;&#xff08;实操策略&#xff09; &#xff08;一&#xff09;明确需求场景与优先级 &#xff08…...

元素三大等待

硬性等待&#xff08;强制等待&#xff09; 线程休眠&#xff0c;强制等待 Thread.sleep(long millis);这是最简单的等待方式&#xff0c;使用time.sleep()方法来实现。在代码中强制等待一定的时间&#xff0c;不论元素是否已经加载完成&#xff0c;都会等待指定的时间后才继…...

【DY】信息化集成化信号采集与处理系统;生物信号采集处理系统一体机

MD3000-C信息化一体机生物信号采集处理系统 实验平台技术指标 01、整机外形尺寸&#xff1a;1680mm(L)*750mm(w)*2260mm(H)&#xff1b; 02、实验台操作面积&#xff1a;750(w)*1340(L&#xff09;&#xff08;长*宽&#xff09;&#xff1b; 03、实验台面离地高度&#xf…...

康谋分享 | 仿真驱动、数据自造:巧用合成数据重构智能座舱

随着汽车向智能化、场景化加速演进&#xff0c;智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测&#xff0c;从乘员识别到安全带状态判断&#xff0c;座舱内的每一次行为都蕴含着巨大的安全与体验价值。 然而&#xff0c;这些感知系统要在多样驾驶行为、…...

YOLO学习笔记 | 基于YOLOv5的车辆行人重识别算法研究(附matlab代码)

基于YOLOv5的车辆行人重识别算法研究 🥥🥥🥥🥥🥥🥥🥥🥥🥥🥥🥥🥥🥥🥥 摘要 本文提出了一种基于YOLOv5的车辆行人重识别(ReID)算法,结合目标检测与特征匹配技术,实现高效的多目标跟踪与识别。通过引入注意力机制、优化损失函数和轻量化网络结构…...

Vue 数据传递流程图指南

今天&#xff0c;我们探讨一下 Vue 中的组件传值问题。这不仅是我们在日常开发中经常遇到的核心问题&#xff0c;也是面试过程中经常被问到的重要知识点。无论你是初学者还是有一定经验的开发者&#xff0c;掌握这些传值方式都将帮助你更高效地构建和维护 Vue 应用 目录 1. 父…...

Node.js 与 MySQL:深入理解与高效实践

Node.js 与 MySQL:深入理解与高效实践 引言 随着互联网技术的飞速发展,Node.js 作为一种高性能的服务端JavaScript运行环境,因其轻量级、单线程和事件驱动等特点,受到了广大开发者的青睐。MySQL 作为一款开源的关系型数据库管理系统,以其稳定性和可靠性著称。本文将深入…...

鸿蒙NEXT开发缓存工具类(ArkTs)

import { ObjectUtil } from ./ObjectUtil;/*** 缓存工具类** 该类提供了一组静态方法&#xff0c;用于操作缓存数据。* 主要功能包括&#xff1a;获取缓存数据、存储缓存数据、删除缓存数据、检查键是否存在、判断缓存是否为空以及清空缓存。** author CSDN-鸿蒙布道师* since…...

【C语言】strstr查找字符串函数

一、函数介绍 strstr 是 C 语言标准库 <string.h> 中的字符串查找函数&#xff0c;用于在主字符串中查找子字符串的首次出现位置。若找到子串&#xff0c;返回其首次出现的地址&#xff1b;否则返回 NULL。它是处理字符串匹配问题的核心工具之一。 二、函数原型 char …...

使用pkexec 和其策略文件安全提权执行外部程序

‌一、pkexec 基本机制‌ pkexec 是 Linux 桌面环境下基于 ‌PolicyKit‌ 的安全提权工具&#xff0c;可通过交互式图形界面获取用户授权后&#xff0c;以 root 权限执行指定程序。其核心特点包括&#xff1a; ‌图形化密码输入‌&#xff1a;调用时自动弹出系统认证对话框&a…...

NVIDIA显卡

NVIDIA显卡作为全球GPU技术的标杆&#xff0c;其产品线覆盖消费级、专业级、数据中心、移动计算等多个领域&#xff0c;技术迭代贯穿架构创新、AI加速、光线追踪等核心方向。以下从技术演进、产品矩阵、核心技术、生态布局四个维度展开深度解析&#xff1a; 一、技术演进&…...

机器学习、深度学习和神经网络

机器学习、深度学习和神经网络 术语及相关概念 在深入了解人工智能&#xff08;AI&#xff09;的工作原理以及它的各种应用之前&#xff0c;让我们先区分一下与AI密切相关的一些术语和概念&#xff1a;人工智能、机器学习、深度学习和神经网络。这些术语有时会被交替使用&#…...

数字孪生在智慧城市中的前端呈现与 UI 设计思路

一、数字孪生技术在智慧城市中的应用与前端呈现 数字孪生技术通过创建城市的虚拟副本&#xff0c;实现了对城市运行状态的实时监控、分析与预测。在智慧城市中&#xff0c;数字孪生技术的应用包括交通流量监测、环境质量分析、基础设施管理等。其前端呈现主要依赖于Web3D技术、…...

黑莓手机有望回归:搭载 Android 15、支持 AI

据 3 月 31 日快科技消息&#xff0c;有博主称一家英国的初创公司正悄悄努力复活 BlackBerry Classic 及 OnwardMobility 未完成的产品。 从爆料的信息看&#xff0c;黑莓新手机将具备 5G、AMOLED 显示屏、12GB RAM 和 256GB 或 512GB 存储空间等高端配置&#xff0c;同时运行 …...

Android OpenGLES 360全景图片渲染(球体内部)

概述 360度全景图是一种虚拟现实技术&#xff0c;它通过对现实场景进行多角度拍摄后&#xff0c;利用计算机软件将这些照片拼接成一个完整的全景图像。这种技术能够让观看者在虚拟环境中以交互的方式查看整个周围环境&#xff0c;就好像他们真的站在那个位置一样。在Android设备…...

LETTERS(DFS)

【题目描述】 给出一个rowcolrowcol的大写字母矩阵&#xff0c;一开始的位置为左上角&#xff0c;你可以向上下左右四个方向移动&#xff0c;并且不能移向曾经经过的字母。问最多可以经过几个字母。 【输入】 第一行&#xff0c;输入字母矩阵行数RR和列数SS&#xff0c;1≤R,S≤…...

嵌入式海思Hi3861连接华为物联网平台操作方法

1.1 实验目的 快速演示 1、认识轻量级HarmonyOS——LiteOS-M 2、初步掌握华为云物联网平台的使用 3、快速驱动海思Hi3861 WIFI芯片,连接互联网并登录物联网平台...