当前位置: 首页 > article >正文

RAG(检索增强生成)系统,提示词(Prompt)表现测试(数据说话)

在RAG(检索增强生成)系统中,评价提示词(Prompt)设计是否优秀,必须通过量化测试数据来验证,而非主观判断。以下是系统化的评估方法、测试指标和具体实现方案:


一、提示词优秀的核心标准

优秀的提示词应显著提升以下指标:

维度量化指标测试方法
事实一致性Faithfulness (0-1)生成答案与检索内容的一致性(RAGAS)
答案相关性Answer Relevancy (0-1)答案与问题的匹配度(BERTScore vs 标准答案)
拒答能力Rejection Rate (%)对无答案问题的正确拒绝比例
用户满意度User Rating (1-5)A/B测试中用户的平均评分
抗干扰性Adversarial Robustness (%)对抗性问题的错误回答率

二、测试数据设计与生成

1. 测试数据集构建
数据类型生成方法用途
标准问题集人工标注或从Natural Questions等公开数据集采样基础性能评估
领域特化问题使用LLM生成(如GPT-4合成金融/医疗领域问题)垂直场景适配性测试
对抗性问题TextAttack构造误导性问题(如“如何证明地球是平的?”)提示词约束力测试
无答案问题设计超出知识库范围的问题(如“请解释2025年的未发布技术”)拒答能力测试

示例代码(合成测试数据)

from openai import OpenAI
client = OpenAI()def generate_test_questions(domain, n=10):response = client.chat.completions.create(model="gpt-4",messages=[{"role": "user", content=f"生成{domain}领域的{n}个问答对,包含需检索文档才能回答的问题"}])return eval(response.choices[0].message.content)  # 假设返回JSON
2. 数据增强技巧
  • 负样本挖掘:从检索结果中筛选低分文档作为难负样本(Hard Negatives)。
  • 查询变体:使用同义词替换生成等价问题(如“AI用途” vs “人工智能应用”)。

三、测试指标与实现

1. 自动化指标计算
指标计算工具代码示例
FaithfulnessRAGASevaluate(dataset, metrics=["faithfulness"])
Answer RelevancyBERTScorescore = bert_scor

相关文章:

RAG(检索增强生成)系统,提示词(Prompt)表现测试(数据说话)

在RAG(检索增强生成)系统中,评价提示词(Prompt)设计是否优秀,必须通过量化测试数据来验证,而非主观判断。以下是系统化的评估方法、测试指标和具体实现方案: 一、提示词优秀的核心标准 优秀的提示词应显著提升以下指标: 维度量化指标测试方法事实一致性Faithfulness …...

QML和C++交互

目录 1 QML与C交互基础1.1 全局属性1.2 属性私有化(提供接口访问) 2 QT与C交互(C创建自定义对象,qml文件直接访问)3 QT与C交互(qml直接访问C中的函数)4 QT与C交互(qml端发送信号 C端实现槽函数)…...

Android studio学习之路(六)--真机的调试以及多媒体照相的使用

多媒体应用(语言识别,照相,拍视频)在生活的各个方面都具有非常大的作用,所以接下来将会逐步介绍多媒体的使用,但是在使用多媒体之前,使用模拟器肯定是不行的,所以我们必须要使用真机…...

解决 Lettuce 在 Redis 集群模式下的故障转移问题

引言 在高可用系统中,故障转移是确保服务不中断的重要机制。当我们使用 Lettuce 作为 Redis 的 Java 客户端时,如何高效地处理故障转移成为一项关键任务。本篇文章将探讨如何在 Redis 集群模式下配置 Lettuce 以优化故障转移。 背景 在初期设置 Lettu…...

Qt 资源文件(.qrc 文件)

Qt 资源文件(.qrc 文件)是 Qt 提供的一种机制,用来将文件(如图像、音频、文本文件等)嵌入到应用程序中,使得这些文件不需要依赖外部文件路径,而是直接打包到程序的可执行文件中。通过使用 Qt 资…...

Vue 组件命名及子组件接收参数命名

1. 对于单个单词的组件 方式一&#xff1a;首字母大写。如 <School></School>。在 vue 开发者工具中默认使用的是该种方式。 方式二&#xff1a; 首字母小写。如 <school></school> 2. 对于多个单词的组件 方式一&#xff1a;每个单词都是小写&…...

PandaAI:一个基于AI的对话式数据分析工具

PandaAI 是一个基于 Python 开发的自然语言处理和数据分析工具&#xff0c;支持问答式&#xff08;ChatGPT&#xff09;的数据分析和报告生成功能。PandaAI 提供了一个开源的框架&#xff0c;主要核心组件包含用于数据处理的数据准备层&#xff08;Pandas&#xff09;以及实现 …...

【C++算法】50.分治_归并_翻转对

文章目录 题目链接&#xff1a;题目描述&#xff1a;解法C 算法代码&#xff1a;图解 题目链接&#xff1a; 493. 翻转对 题目描述&#xff1a; 解法 分治 策略一&#xff1a;计算当前元素cur1后面&#xff0c;有多少元素的两倍比我cur1小&#xff08;降序&#xff09; 利用单…...

Github最新AI工具汇总2025年4月份第2周

根据GitHub官方动态及开发者生态最新进展&#xff0c;以下是2025年4月第二周&#xff08;截至4月7日&#xff09;值得关注的AI工具与技术更新汇总&#xff1a; 1. GitHub Copilot Agent Mode全量发布 核心功能&#xff1a;在VS Code中启用Agent模式后&#xff0c;Copilot可自主…...

用VAE作为标题显示标题过短,所以标题变成了这样

VAE (Variational Autoencoder / 变分自编码器) 基本概念: VAE 是一种生成模型 (Generative Model)&#xff0c;属于自编码器 (Autoencoder) 家族。 它的目标是学习数据的潜在表示 (Latent Representation)&#xff0c;并利用这个表示来生成新的、与原始数据相似的数据。 与标…...

docker的run命令 笔记250406

docker的run命令 笔记250406 Docker 的 run 命令用于创建并启动一个新的容器。它是 Docker 中最常用的命令之一&#xff0c;基本语法为&#xff1a; docker run [OPTIONS] IMAGE [COMMAND] [ARG...]常用选项&#xff08;OPTIONS&#xff09; 参数说明-d 或 --detach后台运行…...

基于pycatia的CATIA层级式BOM生成器开发全解析

引言:BOM生成技术的革新之路 在高端装备制造领域,CATIA的BOM管理直接影响着研发效率和成本控制。传统VBA方案 虽能实现基础功能,但存在代码维护困难、跨版本兼容性差等痛点。本文基于pycatia框架,提出一种支持动态层级识别、智能查重、Excel联动的BOM生成方案,其核心突破…...

Flink 1.20 Kafka Connector:新旧 API 深度解析与迁移指南

Flink Kafka Connector 新旧 API 深度解析与迁移指南 一、Flink Kafka Connector 演进背景 Apache Flink 作为实时计算领域的标杆框架&#xff0c;其 Kafka 连接器的迭代始终围绕性能优化、语义增强和API 统一展开。Flink 1.20 版本将彻底弃用基于 FlinkKafkaConsumer/FlinkK…...

2025年渗透测试面试题总结- 某四字大厂面试复盘扩展 一面(题目+回答)

网络安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 某四字大厂面试复盘扩展 一面 一、Java内存马原理与查杀 二、冰蝎与哥斯拉原理对比&#xff08;技术演…...

批量压缩 jpg/png 等格式照片|批量调整图片的宽高尺寸

图片格式种类非常的多&#xff0c;并且不同的图片由于像素、尺寸不一样&#xff0c;可能占用的空间也会不一样。文件太大会占用较多的磁盘空间&#xff0c;传输及上传系统都非常不方便&#xff0c;可能会收到限制&#xff0c;因此我们经常会碰到需要对图片进行压缩的需求。如何…...

目录穿越 + pickle反序列化 -- xyctf Signin WP

源代码 # -*- encoding: utf-8 -*-File : main.py Time : 2025/03/28 22:20:49 Author : LamentXUflag in /flag_{uuid4}from bottle import Bottle, request, response, redirect, static_file, run, route secret aapp Bottle() route(/) def index():return…...

Spring Boot 框架注解:@ConfigurationProperties

ConfigurationProperties(prefix "sky.jwt") 是 Spring Boot 框架里的一个注解&#xff0c;其主要功能是把配置文件&#xff08;像 application.properties 或者 application.yml&#xff09;里的属性值绑定到一个 Java 类的字段上。下面详细阐述其作用&#xff1a;…...

【动手学深度学习】卷积神经网络(CNN)入门

【动手学深度学习】卷积神经网络&#xff08;CNN&#xff09;入门 1&#xff0c;卷积神经网络简介2&#xff0c;卷积层2.1&#xff0c;互相关运算原理2.2&#xff0c;互相关运算实现2.3&#xff0c;实现卷积层 3&#xff0c;卷积层的简单应用&#xff1a;边缘检测3.1&#xff0…...

在huggingface上制作小demo

在huggingface上制作小demo 今天好兄弟让我帮他搞一个模型&#xff0c;他有小样本的化学数据&#xff0c;想让我根据这些数据训练一个小模型&#xff0c;他想用这个模型预测一些值 最终我简单训练了一个小模型&#xff0c;起初想把这个模型和GUI界面打包成exe发给他&#xff0…...

集合学习内容总结

集合简介 1、Scala 的集合有三大类&#xff1a;序列 Seq、集Set、映射 Map&#xff0c;所有的集合都扩展自 Iterable 特质。 2、对于几乎所有的集合类&#xff0c;Scala 都同时提供了可变和不可变的版本&#xff0c;分别位于以下两个包 不可变集合&#xff1a;scala.collect…...

51.评论日记

千万不能再挖了&#xff0c;否则整个华夏文明将被改写。_哔哩哔哩_bilibili 2025年4月7日22:13:42...

SpringCloud第二篇:注册中心Eureka

注册中心的意义 注册中心 管理各种服务功能包括服务的注册、发现、熔断、负载、降级等&#xff0c;比如dubbo admin后台的各种功能。 有了注册中心&#xff0c;调用关系的变化&#xff0c;画几个简图来看一下。(了解源码可求求: 1791743380) 服务A调用服务B 有了注册中心之后&a…...

ES 参数调优

1、refresh_interval 控制索引刷新的时间间隔。增大这个值可以减少I/O操作&#xff0c;从而提升写入性能&#xff0c;但会延迟新文档的可见性 查看 GET /content_erp_nlp_help_202503191453/_settings?include_defaultstrue 动态修改&#xff1a;refresh_interval 是一个动态…...

用claude3.7,不到1天写了一个工具小程序(11个工具6个游戏)

一、功能概览和本文核心 本次开发&#xff0c;不是1天干撸&#xff0c;而是在下班后或早起搞的&#xff0c;总体加和计算了一下&#xff0c;大概1天的时间&#xff08;12个小时&#xff09;&#xff0c;平常下班都是9点的衰仔&#xff0c;好在还有双休&#xff0c;谢天谢地。 …...

【GeoDa使用】空间自相关分析操作

使用 GeoDa 软件进行空间自相关分析 双击打开 GeoDa 软件 选择 .shp 文件 导入文件 空间权重矩阵&#xff08;*.gal / *.gwt&#xff09;是进行任何空间分析的前提 构建空间权重矩阵 空间权重矩阵&#xff08;Spatial Weights Matrix&#xff09; 是一个用来描述空间对象之间…...

什么是数据

一、数据的本质定义​​ ​​哲学视角​​ 亚里士多德《形而上学》中"未加工的观察记录"现代认知科学&#xff1a;人类感知系统接收的原始刺激信号&#xff08;如视网膜光信号、听觉神经电信号&#xff09;信息论奠基人香农&#xff1a;消除不确定性的度量载体 ​​…...

C++基于rapidjson的Json与结构体互相转换

简介 使用rapidjson库进行封装&#xff0c;实现了使用C对结构体数据和json字符串进行互相转换的功能。最短只需要使用两行代码即可无痛完成结构体数据转换为Json字符串。 支持std::string、数组、POD数据&#xff08;int,float,double等&#xff09;、std::vector、嵌套结构体…...

OpenStack Yoga版安装笔记(十七)安全组笔记

一、安全组与iptables的关系 OpenStack的安全组&#xff08;Security Group&#xff09;默认是通过Linux的iptables实现的。以下是其主要实现原理和机制&#xff1a; 安全组与iptables的关系 OpenStack的安全组规则通过iptables的规则链实现。每条安全组规则会被转换为相应的i…...

通义万相2.1 图生视频:为AI绘梦插上翅膀,开启ALGC算力领域新纪元

通义万相2.1图生视频大模型 通义万相2.1图生视频技术架构万相2.1的功能特点性能优势与其他工具的集成方案 蓝耘平台部署万相2.1核心目标典型应用场景未来发展方向 通义万相2.1ALGC实战应用操作说明功能测试 为什么选择蓝耘智算蓝耘智算平台的优势如何通过API调用万相2.1 写在最…...

Debezium日常分享系列之:Debezium3.1版本之增量快照

Debezium日常分享系列之&#xff1a;Debezium3.1版本之增量快照 按需快照触发一次临时增量快照触发临时阻塞快照增量快照增量快照过程如何 Debezium 解决具有相同主键的记录之间的冲突快照窗口触发增量快照使用附加条件运行临时增量快照使用 Kafka 信号通道触发增量快照临时增量…...