当前位置: 首页 > article >正文

DFS 蓝桥杯

最大数字

问题描述

给定一个正整数 NN 。你可以对 NN 的任意一位数字执行任意次以下 2 种操 作:

  1. 将该位数字加 1 。如果该位数字已经是 9 , 加 1 之后变成 0 。

  2. 将该位数字减 1 。如果该位数字已经是 0 , 减 1 之后变成 9 。

你现在总共可以执行 1 号操作不超过 AA 次, 2 号操作不超过 BB 次。 请问你最大可以将 NN 变成多少?

输入格式

第一行包含 3 个整数: N,A,BN,A,B 。

输出格式

一个整数代表答案。

dfs流程

void dfs(int u) //u表示到第几位
{if() {return;}  //边界st[i] = 1; // 改变条件dfs(u + 1); //下一步st[i] = 0; // 恢复现场}

代码(通过率40%)
#include <bits/stdc++.h>
using namespace std;#define int long long
string n;
int a, b;
int l,mx,res;void dfs(int u)
{if(u == l) {mx = max(mx, res);cout << mx;return;}int t = n[u];int x = min(9-t, a);a-=x;res = res*10 + t + x; dfs(u+1);a+=x;if(b > t) {b-=(t+1);res = res*10 + 9;dfs(u+1);b+=t+1;}
}signed main()
{// 请在此输入您的代码cin >> n >> a >> b;l = n.size();  dfs(0);  return 0;
}
ac代码
#include <iostream>
#include <cmath>
using namespace std;
string n;
long long ans; 
int a,b;
void dfs(int x,long long an){    //a代表每次遍历的数 int t=n[x]-'0';    //位数转为intif(n[x]){          //防止为空 int c=min(a,9-t);a-=c;dfs(x+1,an*10+t+c);a+=c;if(b>t){b=b-t-1;dfs(x+1,an*10+9);b=b+t+1;}}else{ans=max(ans,an);}
}
int main(){cin>>n>>a>>b;dfs(0,0);   //0号字符 cout<<ans;return 0;
}

相关文章:

DFS 蓝桥杯

最大数字 问题描述 给定一个正整数 NN 。你可以对 NN 的任意一位数字执行任意次以下 2 种操 作&#xff1a; 将该位数字加 1 。如果该位数字已经是 9 , 加 1 之后变成 0 。 将该位数字减 1 。如果该位数字已经是 0 , 减 1 之后变成 9 。 你现在总共可以执行 1 号操作不超过 A…...

LabVIEW 开发如何降本增效

在 LabVIEW 开发领域&#xff0c;如何在确保项目质量的同时降低开发成本&#xff0c;是众多企业和开发者共同关注的焦点。这不仅关乎资源的高效利用&#xff0c;更影响项目的投资回报率和市场竞争力。下面&#xff0c;我们将从多个维度深入剖析降本策略&#xff0c;并结合具体案…...

Tomcat 负载均衡

目录 二、Tomcat Web Server 2.1 Tomcat 部署 2.1.1 Tomcat 介绍 2.1.2 Tomcat 安装 2.2 Tomcat 服务管理 2.2.1 Tomcat 启停 2.2.2 目录说明 2.2.3编辑主页 2.3 Tomcat管理控制台 2.3.1开启远程管理 2.3.2 配置远程管理密码 三、负载均衡 3.1 重新编译Nginx 3.1.1 确…...

【AI学习】AI Agent(人工智能体)

1&#xff0c;AI agent 1&#xff09;定义 是一种能够感知环境、基于所感知到的信息进行推理和决策&#xff0c;并通过执行相应动作来影响环境、进而实现特定目标的智能实体。 它整合了多种人工智能技术&#xff0c;具备自主学习、自主行动以及与外界交互的能力&#xff0c;旨…...

4月8日日记

今天抖音刷到一个视频 记了一下笔记 想做自媒体&#xff0c;直播&#xff0c;抖音是最大的平台&#xff0c;但是我的号之前因为跟人互喷被封号了 今天想把实名认证转移到新号上&#xff0c;试了一下竟然这次成功了&#xff0c;本以为能开直播了但是 还是因为之前的号有违规记…...

【JavaScript】十六、事件捕获和事件冒泡

文章目录 1、事件流2、事件捕获3、事件捕获4、阻止冒泡5、解绑事件6、鼠标经过事件的区别7、两种事件注册语法的区别 1、事件流 先举个形象的例子&#xff1a;你去西安大雁塔旅游 出发找目的地时&#xff1a;先从你家出发&#xff0c;到陕西省西安市&#xff0c;再到雁塔区&a…...

MyBatis的第四天学习笔记下

10.MyBatis参数处理 10.1 项目信息 模块名&#xff1a;mybatis-007-param数据库表&#xff1a;t_student表结构&#xff1a; id: 主键name: 姓名age: 年龄height: 身高sex: 性别birth: 出生日期 sql文件&#xff1a; create table t_student ( id bigint auto_increm…...

基于 Spring Boot 瑞吉外卖系统开发(一)

基于 Spring Boot 瑞吉外卖系统开发&#xff08;一&#xff09; 系统概述 系统功能 技术选型 初始项目和数据准备 初始项目和SQL文件下载 创建数据库并导入数据 打开reggie项目 运行效果 主函数启动项目&#xff0c;访问URL&#xff1a; http://127.0.0.1:8080/backend/pag…...

Baumer工业相机堡盟工业相机如何处理偶发十万分之一或百万分之一几率出现的黑图现象(C#)

Baumer工业相机堡盟工业相机如何处理偶发十万分之一或百万分之一几率出现的黑图现象&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机出现黑图的技术背景硬件层面软件层面环境因素 实际案例演示&#xff1a;BaumerVCXG-53M.I.XT 防护相机项目使用环境项目反馈问题项目…...

【Python中读取并显示遥感影像】

在Python中读取并显示遥感影像&#xff0c;可以使用rasterio库读取影像数据&#xff0c;并结合matplotlib库进行可视化。以下是一个完整的示例代码&#xff1a; import rasterio import matplotlib.pyplot as plt# 打开遥感影像文件 with rasterio.open(path/to/your/image.ti…...

WordPress超简洁的主题:果果CMS主题

果果CMS是基于WordPress开发的超精简的一款主题&#xff0c;它在原有的特性上添加了许多新特性&#xff0c;例如&#xff1a;随机文章、随机标签、随机分类、广告、友情链接等。 新版特性&#xff1a; 小&#xff1a;主题安装包文件大小只有140.48KB。少&#xff1a;主题最小…...

leetcode13.罗马数字转整数

遍历&#xff0c;下一个值不大于当前值就加上当前值&#xff0c;否则就减去当前值 class Solution {public int romanToInt(String s) {Map<Character, Integer> map Map.of(I, 1,V, 5,X, 10,L, 50,C, 100,D, 500,M, 1000);int sum 0;for (int i 0; i < s.length(…...

CSS 学习提升网站或者项目

有几个不错的开源项目可以帮助你练习和提升CSS技能&#xff1a; CSS-Tricks CSS-Tricks 提供了很多关于CSS的技巧和教程&#xff0c;可以通过实践它们来提高CSS技能。你可以在CSS-Tricks上找到很多有趣的项目和代码示例。 Frontend Mentor Frontend Mentor 是一个非常适合练习…...

线程安全问题的原因与解决方案总结

目录 一 什么是线程安全&#xff1f; 二 线程安全问题的实例 三 线程安全问题的原因 1.多个线程修改共享数据 2.抢占式执行 3.修改操作不是原子的 4.内存可见性问题 5.指令重排序 四 解决方案 1.同步代码块 2.同步方法 3.加锁lock解决问题 一 什么是线程安全&…...

实时比分更新系统的搭建

搭建一个实时比分更新系统需要考虑多个技术环节&#xff0c;以下是一个完整的实现方案&#xff1a; 一、系统架构 1.数据获取层 比分数据API接入&#xff08;如熊猫比分、API-Football等&#xff09; 网络爬虫&#xff08;作为备用数据源&#xff09; 2.数据处理层 …...

Tunable laser激光器的前向和后向锁波长方案

----转载自秦岭农民的文章 Tunable laser可调激光器的锁波长方案 激光器锁波长技术是指通过各种手段将激光器的输出波长稳定在某一特定值或范围内&#xff0c;以满足高精度应用的需求。这些技术包括Etalon、波长计/光谱仪反馈、波长参考源、温度控制、电流控制、锁相环&#…...

flink iceberg写数据到hdfs,hive同步读取

1、组件版本 名称版本hadoop3.4.1flink1.20.1hive4.0.1kafka3.9.0zookeeper3.9.3tez0.10.4spark&#xff08;hadoop3&#xff09;3.5.4jdk11.0.13maven3.9.9 环境变量配置 vim编辑保存后&#xff0c;要执行source /etc/profile LD_LIBRARY_PATH/usr/local/lib export LD_LIBR…...

蓝桥杯:日期统计

文章目录 问题描述解法一递归解法二&#xff1a;暴力破解 问题描述 首先我们要了解什么是子序列&#xff0c;就是一个序列之中可以忽略元素但是不能改变顺序之后获得的序列就叫做子序列。 如"123"就是"11234"的子序列而不是"11324"的子序列 解法…...

IQ解调原理#通信原理系列

IQ解调原理&#xff1a;接收端收到s(t)信号后&#xff0c;分为两路&#xff1a; 一路信号乘以cosω₀t再积分&#xff0c;就可以得到a&#xff1a; 另一路乘以 -sinω₀t再积分&#xff0c;就可以得到b&#xff1a;...

C++蓝桥杯实训篇(三)

片头 嗨&#xff01;小伙伴们&#xff0c;大家好~ 今天我们来学习前缀和与差分相关知识&#xff0c;准备好了吗&#xff1f;咱们开始咯&#xff01; 一、一维前缀和 以上&#xff0c;是我们用数学知识求解区间和&#xff0c;现在我们使用前缀和来求解&#xff1a; 我们知道&am…...

【数据挖掘】岭回归(Ridge Regression)和线性回归(Linear Regression)对比实验

这是一个非常实用的 岭回归&#xff08;Ridge Regression&#xff09;和线性回归&#xff08;Linear Regression&#xff09;对比实验&#xff0c;使用了 scikit-learn 中的 California Housing 数据集 来预测房价。 &#x1f4e6; 第一步&#xff1a;导入必要的库 import num…...

前言:为什么要学习爬虫和逆向,该如何学习?

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、为什么要学习爬虫与逆向?1.1 核心价值1.2 爬虫和应用场景对比1.3 逆向工程的应用场景二、爬虫技术学习路径2.1 基础阶段:包括原理、采集、解析和入库整套流程2.2 中级阶段:反爬对抗2.3 高级阶段:高效爬虫三、逆…...

CExercise_07_1指针和数组_1编写函数交换数组中两个下标的元素

题目&#xff1a; 要求编写函数将数组作为参数传递来实现&#xff1a; 1.编写函数交换数组中两个下标的元素。函数声明如下&#xff1a;void swap(int *arr, int i, int j) 。要求不使用[]运算符&#xff0c;将[]还原成解引用运算符和指针加法来完成。 关键点 通过指针交换数组…...

塔能科技:智能路灯物联运维产业发展现状与趋势分析

随着智慧城市建设的推进&#xff0c;智能路灯物联运维产业正经历快速发展&#xff0c;市场规模持续扩大。文章探讨了智能路灯物联运维的技术体系、市场机遇和挑战&#xff0c;并预测了未来发展趋势&#xff0c;为行业发展提供参考。 关键词 智能路灯&#xff1b;物联运维&#…...

解决 DBeaver 中 “Public Key Retrieval is not allowed“ 错误

解决 DBeaver 中 “Public Key Retrieval is not allowed” 错误 在 DBeaver 中遇到这个 MySQL 连接错误时&#xff0c;可以通过以下方法解决&#xff1a; 方法1&#xff1a;编辑连接配置 在 DBeaver 中右键点击有问题的 MySQL 连接&#xff0c;选择 编辑连接(Edit Connecti…...

ZW3D二次开发_普通对话框_设置对话框弹出位置

ZW3D的普通对话框可以在UI设计时静态地设置对话框弹出的位置&#xff0c;方法如下&#xff1a; 选中对话框的最顶级对象&#xff0c;即ZsCc::Form对象&#xff0c;在属性管理器中添加一个动态属性“form_pos”&#xff0c;类型为“StringList”&#xff0c;如下图所示 不同属性…...

低代码开发「JNPF」应用场景

政务系统快速搭建 在数字化政务转型的浪潮下&#xff0c;JNPF 快速开发平台扮演着关键角色&#xff0c;为政府部门提供了高效且便捷的审批流程自动化解决方案。 以 “一网通办” 为例&#xff0c;通过平台的可视化拖拽式配置功能&#xff0c;政府工作人员能够将原本复杂繁琐的…...

Arch视频播放CPU占用高

Arch Linux配置视频硬件加速 - DDoSolitary’s Blog 开源神器&#xff1a;加速你的视频体验 —— libvdpau-va-gl-CSDN博客 VDPAU&#xff08;Video Decode and Presentation API for Unix&#xff09; VA-API&#xff08;Video Acceleration API&#xff09; OpenGL 我的电…...

欧拉函数模板

1.欧拉函数模板 - 蓝桥云课 问题描述 这是一道模板题。 首先给出欧拉函数的定义&#xff1a;即 Φ(n) 表示的是小于等于 n 的数中和 n 互质的数的个数。 比如说 Φ(6)2&#xff0c;当 n 是质数的时候&#xff0c;显然有 Φ(n)n−1。 题目大意&#xff1a; 给定 n 个正整数…...

【资料分享】全志T536(异构多核ARMCortex-A55+玄铁E907 RISC-V)工业核心板说明书

核心板简介 创龙科技SOM-TLT536是一款基于全志科技T536MX-CEN2/T536MX-CXX四核ARM Cortex-A55 +...