论文:Generalized Category Discovery with Large Language Models in the Loop
论文下载地址:Generalized Category Discovery with Large Language Models in the Loop - ACL Anthology
1、研究背景
尽管现代机器学习系统在许多任务上取得了优异的性能,绝大多数都遵循封闭世界的设置,假设训练和测试数据来自同一组预定义的类别。然而,在现实世界中,许多实际问题,如意图检测和图片识别是开放世界,其中训练有素的模型可能会遇到具有未知新颖类别的数据。为了应对这一限制,广义类别发现(GCD)被提出并在自然语言处理和计算机视觉两个领域中被广泛研究。GCD要求模型根据一些仅包含已知类别的已标记数据,从一组未标记数据中识别已知和新类别,这可以使模型适应新兴类别,而无需任何人工努力。
目前的方法通常首先对标记数据进行监督预训练,对未标记数据进行自监督学习,以训练一个基本模型,如BERT,然后他们执行聚类方法,如KMeans,以发现已知和新的类别。即使这些方法可以提高已知类别的性能,但由于缺乏监督,它们通常在新类别上表现不佳。此外,由于缺乏新类别的先验知识,他们还努力揭示所发现的聚类的语义含义(例如,类别名称或描述)。最近,大型语言模型(LLM)如ChatGPT在没有任何标记样本的情况下也显示出了非凡的应用能力。然而,LLMs不能直接应用于GCD,GCD需要模型来聚类成千上万的样本。数据隐私、高推理延迟和高API成本等问题也限制了它们在现实世界中的应用。
2、拟解决的关键问题
为了解决上述限制并享受基本模型和LLM的优点,我们提出了Loop,一种将LLM引入训练过程的端到端主动学习框架。Loop通过选择几个关键样本来查询LLM,并根据反馈优化基本模型,可以弥补监督的不足,并以较小的查询代价为发现的聚类生成类别名称。因此,我们只需要在本地训练和维护一个小的基本模型,这可以降低推理成本和保护数据隐私。具体来说,如图1所示,我们首先提出局部不一致采样(LIS)来选择落入错误聚类的概率较高的最具信息量的样本。具体来说,我们选择样本具有高熵的聚类分配概率和其邻居具有最多样化的聚类分配。直观上,具有高熵和不同邻居预测的样本似乎违反了聚类假设(江等,2022)并位于决策边界附近(图2虚线圆),因此这些具有很大不确定性的邻居混沌样本将有很高的概率落入错误的聚类(王等,2023),因此纠正它们可以显著提高模型性能。

图1 模型的训练循环

图2 模型架构
3、相关解决方案
3.1 多任务预训练

3.2 局部不一致抽样

3.3 可扩展查询策略
给定选择的样本,下一步是如何查询LLM以获得适当的监督信息。然而,我们不能直接向LLM查询类别,因为没有新类别的标签信息,并且返回的类别很难与聚类分配一致。因此,受最近工作的启发,我们提出了一种可扩展的查询策略,通过查询LLM哪些样本是所选样本的真正邻居来缓解局部不一致问题。这样,我们可以通过确定样本之间的邻域关系来找到所选样本的真实聚类分配。
这个查询策略是可伸缩的,因为我们可以设置不同数量的邻居选项供LLM选择。以带有|q| options的查询为例,提示可以设计为:“选择与查询语句更好对应的语句。查询:[S]。第一句:[S1];第二句:[S2];...;句子|q|:[S|q|]。”,其中[S]是所选的查询样本,[S1],[S2]...[S|q|]是来自具有查询样本的最多邻居的top |q|聚类的[S]的邻居句子。
所提出的查询策略可以通过从混乱的邻域中选择真正的邻居来帮助纠正局部不一致的样本。这种策略是可伸缩的,因为我们可以添加不同数量的选项来查询LLM。虽然添加更多选项将提供从与查询相同的类别中选择样本的更高概率,但它将通过添加更多查询标记(秒)来增加查询成本。即使我们没有找到真正的邻居样本,我们的模型仍然可以通过拉近相似样本来学习语义知识。
3.4 聚类解释
不同于以往只通过聚类来发现没有任何语义信息的聚类,我们提出用LLMs来解释发现的聚类。具体来说,我们首先利用“对齐和解耦”策略将对应于新类别的聚类从发现的聚类中解耦。然后,对于每个解耦的聚类,我们选择最接近聚类中心的几个样本作为代表性样本。接下来,我们制作LLM来总结这些样本,以生成这些新颖类别的标签名称。实验结果表明,该策略能够为发现的新类别选择有代表性的样本并生成准确的标签名称。
4、总结
在本文中,提出了一个主动学习框架Loop,它将LLMs引入到广义类别发现的训练循环中,可以在不需要任何人工努力的情况下提高模型性能。研究进一步提出局部不一致抽样来选择有用的样本,并利用可扩展查询在LLMs的反馈下修正这些样本。通过将样本拉得更接近其精确的邻居,模型可以学习聚类友好的表示。最后,为发现的集群生成标签名称,以便于实际应用。实验表明,Loop大大优于SOTA模型,并为发现的聚类生成准确的类别名称。
相关文章:
论文:Generalized Category Discovery with Large Language Models in the Loop
论文下载地址:Generalized Category Discovery with Large Language Models in the Loop - ACL Anthology 1、研究背景 尽管现代机器学习系统在许多任务上取得了优异的性能,绝大多数都遵循封闭世界的设置,假设训练和测试数据来自同一组预定义…...
第十六届蓝桥杯 省赛C/C++ 大学B组
编程题目现在在洛谷上都可以提交了。 未完待续,写不动了。 C11 编译命令 g A.cpp -o A -Wall -lm -stdc11A. 移动距离 本题总分:5 分 问题描述 小明初始在二维平面的原点,他想前往坐标 ( 233 , 666 ) (233, 666) (233,666)。在移动过程…...
从输入URL到页面渲染:浏览器请求的完整旅程解析
🌐 从输入URL到页面渲染:浏览器请求的完整旅程解析 #网络协议 #浏览器原理 #性能优化 #Web开发 一、概览:一次请求的9大关键阶段 1. 用户输入URL → 2. DNS解析 → 3. 建立TCP连接 → 4. 发送HTTP请求 5. 服务器处理 → 6. 接收响应 → 7…...
【计网】网络交换技术之分组交换(复习自用,重要1)
复习自用的,处理得比较草率,复习的同学或者想看基础的同学可以看看,大佬的话可以不用浪费时间在我的水文上了 另外两种交换技术可以直接点击链接访问相关笔记: 电路交换 报文交换 一、分组交换的定义 1.定义 分组交换&#x…...
6.2 GitHub API接口设计实战:突破限流+智能缓存实现10K+仓库同步
GitHub Sentinel 定期更新 API 接口设计 关键词:GitHub API 集成、异步爬虫开发、RESTful 接口设计、请求限流策略、数据增量更新 1. 接口架构设计原则 采用 分层隔离架构 实现数据采集与业务逻辑解耦: #mermaid-svg-WihvC78J0F5oGDbs {font-family:"trebuchet ms&quo…...
考研单词笔记 2025.04.13
alleviate v减轻,缓解 alleviation n减轻,缓解 blunt a钝的,不锋利的,坦率的,直截了当的v使减弱,使变钝 dampen v抑制,减弱,使潮湿 dim v减弱,淡化,变昏暗…...
解密CHASE-SQL和XiYan-SQL多智能体AI如何最终实现TEXT2SQL的突破
想象一个世界,无论技术背景如何,任何人都能轻松查询海量数据库、挖掘深层洞察。比如:“我想知道安徽地区最畅销电子产品的第三季度销售额?”——只需一句话。“去年营销支出与客户获取成本之间的相关性如何?”——像聊天一样输入问题。这就是Text-to-SQL的承诺:将人类语言…...
思考力提升的黄金标准:广度、深度与速度的深度剖析
文章目录 引言一、广度的拓展:构建多元知识网络1.1 定义与重要性1.2 IT技术实例与提升策略小结:构建多元知识网络,提升IT领域思考力广度 二、深度的挖掘:追求知识的精髓2.1 定义与重要性2.2 IT技术实例与提升策略小结:…...
web自动化:下拉选择框、弹出框、滚动条的操作
web自动化:下拉选择框、弹出框、滚动条的操作 一、下拉选择框 1、导包 from selenium.webdriver.support.select inport Select 2、实例化对象 Select(element) 3、常用方法 通过option索引来定位,从0开始:select_by_index(index)通过…...
数字人:打破次元壁,从娱乐舞台迈向教育新课堂(4/10)
摘要:数字人正从娱乐领域的璀璨明星跨界到教育领域的智慧导师,展现出无限潜力。从虚拟偶像、影视游戏到直播短视频,数字人在娱乐产业中大放异彩,创造巨大商业价值。在教育领域,数字人助力个性化学习、互动课堂和虚拟实…...
互联网三高-数据库高并发之分库分表ShardingJDBC
1 ShardingJDBC介绍 1.1 常见概念术语 ① 数据节点Node:数据分片的最小单元,由数据源名称和数据表组成 如:ds0.product_order_0 ② 真实表:再分片的数据库中真实存在的物理表 如:product_order_0 ③ 逻辑表:…...
【NLP】 18. Tokenlisation 分词 BPE, WordPiece, Unigram/SentencePiece
1. 翻译系统性能评价方法 在机器翻译系统性能评估中,通常既有人工评价也有自动评价方法: 1.1 人工评价 人工评价主要关注以下几点: 流利度(Fluency): 判断翻译结果是否符合目标语言的语法和习惯。充分性…...
Android游戏逆向工程全面指南
文章目录 第一部分:基础概念与环境搭建1.1 游戏逆向工程概述1.2 法律与道德考量1.3 开发环境准备基础工具集:环境配置示例: 第二部分:静态分析技术2.1 APK反编译与资源提取使用Apktool解包:关键文件分析: 2…...
ip route show 命令详解
《Linux 中 ip route show 输出结果解析及关键概念》 以下是对 ip route show 输出结果的详细解析,帮助你理解每条路由的含义及作用: 一、路由表整体结构 Linux 路由表中的每条条目包含 目标网络 / 主机、下一跳网关、出接口、路由协议、作用域、源地…...
antv x6使用(支持节点排序、新增节点、编辑节点、删除节点、选中节点)
项目需要实现如下效果流程图,功能包括节点排序、新增节点、编辑节点、删除节点、选中节点等 html部分如下: <template><div class"MindMapContent"><el-button size"small" click"addNode">新增节点&…...
DP主站如何华丽变身Modbus TCP网关!
DP主站如何华丽变身Modbus TCP网关! 在工业自动化领域,Profibus DP和Modbus TCP是两种常用的通信协议。Profibus DP通常应用于制造业自动化场景,而Modbus TCP则广泛使用于工业自动化和楼宇自动化等领域。为了实现这两种协议之间的互联互通&a…...
榕壹云在线商城系统:基于THinkPHP+ Mysql+UniApp全端适配、高效部署的电商解决方案
项目背景:解决多端电商开发的痛点 随着移动互联网的普及和用户购物习惯的碎片化,传统电商系统面临以下挑战: 1. 多平台适配成本高:需要同时开发App、小程序、H5等多端应用,重复开发导致资源浪费。 2. 技术依赖第三方…...
Pinia最基本用法
1. 定义 Store 首先,定义一个 Pinia Store,使用组合式 API 风格和 ref 来管理状态。 示例:stores/ids.js import { defineStore } from pinia; import { ref } from vue;export const useIdsStore defineStore(ids, () > {const ids …...
Android studio打包uniapp插件
一.参考资料与环境准备 原生工程配置需要使用到Android studio和HbuilderX 当前测试的as版本-20240301,下载地址:HbuilderX版本:4.36 二.插件创建流程 1.导入下载的UniPlugin-Hello-AS工程(下载地址见参考资料) 2.生成jks证书…...
App Cleaner Pro for Mac 中 Mac软件卸载工具
App Cleaner Pro for Mac 中 Mac软件卸载工具 一、介绍 App Cleaner & Uninstaller Pro Mac破解,是一款Mac软件卸载工具,残余垃圾清除工具!可以卸载应用程序或只删除不需要的服务文件,甚至可以删除以前删除的应用程序中的文…...
多线程与Tkinter界面交互
在现代图形用户界面(GUI)应用程序中,可能会遇到需要长时间运行的任务,例如网络请求、数据处理或文件读取等。如果这些任务直接在主线程中运行,会导致GUI界面“卡顿”或“不响应”。为了保持界面流畅和响应用户操作,我们可以通过使用多线程来将这些任务移到后台运行。然而…...
开发规范——Restful风格
目录 Restful Apifox 介绍 端口号8080怎么来的? 为什么要使用Apifox? Restful 如果请求方式是Post,那我就知道了要执行新增操作,要新增一个用户 如果请求方式是Put,那就代表我要修改用户 具体要对这些资源进行什么样的操…...
大模型——Llama Stack快速入门 部署构建AI大模型指南
Llama Stack快速入门 部署构建AI大模型指南 介绍 Llama Stack 是一组标准化和有主见的接口,用于如何构建规范的工具链组件(微调、合成数据生成)和代理应用程序。我们希望这些接口能够在整个生态系统中得到采用,这将有助于更轻松地实现互操作性。 Llama Stack 定义并标准化…...
符号右移“ >>= “ 与 无符号右移“ >>>= “ 的区别
符号右移" >> " 与 无符号右移" >>> " 的区别 一、符号右移" >> " 与 无符号右移" >>> " 的区别1. 符号右移(>>)与无符号右移(>>>)的区别…...
利用阿里云企业邮箱服务实现Python群发邮件
目录 一、阿里云企业邮箱群发邮件全流程实现 1. 准备工作与环境配置 2. 收件人列表管理 3. 邮件内容构建 4. 附件添加实现 5. 邮件发送核心逻辑 二、开发过程中遇到的问题与解决方案 1. 附件发送失败问题 2. 中文文件名乱码问题 3. 企业邮箱认证失败 三、完整工作流…...
探秘 Ruby 与 JavaScript:动态语言的多面风采
1 语法特性对比:简洁与灵活 1.1 Ruby 的语法优雅 Ruby 的语法设计旨在让代码读起来像自然语言一样流畅。它拥有简洁而富有表现力的语法结构,例如代码块、符号等。 以下是一个使用 Ruby 进行数组操作的简单示例: # 定义一个数组 numbers [1…...
08-JVM 面试题-mk
文章目录 1.JVM 的各部分组成2.运行时数据区2.1.什么是程序计数器?2.2.你能给我详细的介绍Java堆吗?2.3.能不能解释一下方法区?2.3.1常量池2.3.2.运行时常量池2.4.什么是虚拟机栈?2.4.1.垃圾回收是否涉及栈内存?2.4.2.栈内存分配越大越好吗?2.4.3.方法内的局部变量是否线…...
PostgreSQL技术大讲堂 - 第86讲:数据安全之--data_checksums天使与魔鬼
PostgreSQL技术大讲堂 - 第86讲,主题:数据安全之--data_checksums天使与魔鬼 1、data_checksums特性 2、避开DML规则,嫁接非法数据并合法化 3、避开约束规则,嫁接非法数据到表中 4、避开数据检查,读取坏块中的数据…...
DOM解析XML:Java程序员的“乐高积木式“数据搭建
各位代码建筑师们!今天我们要玩一个把XML变成内存乐高城堡的游戏——DOM解析!和SAX那种"边看监控边破案"的刺激不同,DOM就像把整个乐高说明书一次性倒进大脑,然后慢慢拼装(内存:你不要过来啊&…...
C++ 入门六:多态 —— 同一接口的多种实现之道
在面向对象编程中,多态是最具魅力的特性之一。它允许我们通过统一的接口处理不同类型的对象,实现 “一个接口,多种实现”。本章将从基础概念到实战案例,逐步解析多态的核心原理与应用场景,帮助新手掌握这一关键技术。 …...
