Java学习手册:常见并发问题及解决方案

在Java并发编程中,开发者常常会遇到各种并发问题,这些问题可能导致程序行为不可预测、性能下降甚至程序崩溃。以下是一些常见的并发问题及其解决方案:
1.竞态条件(Race Condition)
竞态条件是指多个线程同时访问共享资源时,程序的行为依赖于线程的执行顺序,导致不可预测的结果。
问题示例
public class Counter {private int count = 0;public void increment() {count++;}public int getCount() {return count;}
}// 在多线程环境下,count++操作可能不原子,导致结果不准确
解决方案
- 使用
synchronized关键字:确保同一时间只有一个线程可以执行increment方法。 - 使用原子类:
AtomicInteger提供了原子的递增操作。
import java.util.concurrent.atomic.AtomicInteger;public class AtomicCounter {private AtomicInteger count = new AtomicInteger(0);public void increment() {count.incrementAndGet();}public int getCount() {return count.get();}
}
2.死锁(Deadlock)
死锁发生在两个或多个线程互相等待对方释放资源时,导致所有线程都无法继续执行。
问题示例
public class DeadlockExample {private final Object lock1 = new Object();private final Object lock2 = new Object();public void method1() {synchronized (lock1) {System.out.println("Thread 1: Holding lock 1...");synchronized (lock2) {System.out.println("Thread 1: Holding lock 2...");}}}public void method2() {synchronized (lock2) {System.out.println("Thread 2: Holding lock 2...");synchronized (lock1) {System.out.println("Thread 2: Holding lock 1...");}}}public static void main(String[] args) {DeadlockExample example = new DeadlockExample();Thread t1 = new Thread(example::method1);Thread t2 = new Thread(example::method2);t1.start();t2.start();}
}
解决方案
- 按顺序获取锁:所有线程应以相同的顺序获取多个锁。
- 使用
tryLock()方法:在尝试获取锁时设置超时时间,避免无限期等待。
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;public class DeadlockSolution {private final Lock lock1 = new ReentrantLock();private final Lock lock2 = new ReentrantLock();public void method1() {lock1.lock();try {System.out.println("Thread 1: Holding lock 1...");lock2.lock();try {System.out.println("Thread 1: Holding lock 2...");} finally {lock2.unlock();}} finally {lock1.unlock();}}public void method2() {lock1.lock();try {System.out.println("Thread 2: Holding lock 1...");lock2.lock();try {System.out.println("Thread 2: Holding lock 2...");} finally {lock2.unlock();}} finally {lock1.unlock();}}
}
3.饥饿(Starvation)
饥饿是指某些线程长期无法获得资源,导致无法执行。
解决方案
- 使用公平锁:确保线程按请求顺序获得锁。
- 合理设置线程池参数:避免高优先级线程长期占用资源。
import java.util.concurrent.locks.ReentrantLock;public class FairLockExample {private final ReentrantLock lock = new ReentrantLock(true); // 公平锁public void accessResource() {lock.lock();try {// 访问资源} finally {lock.unlock();}}
}
4.活锁(Livelock)
活锁是指线程不断尝试执行但无法取得进展,通常因为线程反复“让步”。
解决方案
- 引入随机等待时间:避免线程反复冲突。
public class LivelockSolution {public void avoidLivelock() {while (true) {try {// 尝试执行任务break;} catch (ConflictException e) {// 随机等待try {Thread.sleep((long) (Math.random() * 1000));} catch (InterruptedException ie) {Thread.currentThread().interrupt();}}}}
}
5.资源泄漏(Resource Leak)
资源泄漏是指线程未正确释放资源,导致资源耗尽。
解决方案
- 使用
try-with-resources:确保资源自动关闭。 - 在
finally块中释放资源:确保资源在异常情况下也能被释放。
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;public class ResourceLeakSolution {public void readResource() {try (BufferedReader reader = new BufferedReader(new FileReader("example.txt"))) {String line;while ((line = reader.readLine()) != null) {System.out.println(line);}} catch (IOException e) {e.printStackTrace();}}
}
总结
Java并发编程中的常见问题包括竞态条件、死锁、饥饿、活锁和资源泄漏等。通过合理使用同步机制、原子类、公平锁、随机等待时间以及资源管理技术,可以有效避免这些问题,提高程序的稳定性和可靠性。希望这些解决方案能帮助开发者在实际开发中更好地应对并发编程的挑战。
相关文章:
Java学习手册:常见并发问题及解决方案
在Java并发编程中,开发者常常会遇到各种并发问题,这些问题可能导致程序行为不可预测、性能下降甚至程序崩溃。以下是一些常见的并发问题及其解决方案: 1.竞态条件(Race Condition) 竞态条件是指多个线程同时访问共享…...
【免费下载】中国各省市地图PPT,可编辑改颜色
很多同学做PPT时,涉及到中国地图或省份展示,自己绘制和调色难度大,下面为大家准备了中国地图的可编辑模板,可以根据PPT整体色或想突出的省份,直接调整颜色。 需要这份数据,请在文末查看下载方法。 一、数…...
Linux 系统编程 day4 进程管道
进程间通信(IPC) Linux环境下,进程地址空间相互独立,任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间不能互相访问,要交换数据必须通过内核,在内核中开辟一块缓冲区…...
【Reading Notes】(8.2)Favorite Articles from 2025 February
【February】 高阶智驾别被短期市占率迷住眼!(2025年02月01日) 2024年,高阶智驾发展迅猛,粗略计算中国市场(特斯拉之外)的城市NOA车型的年度搭载量超过了100万台。但相比于中国乘用车市场2000万…...
探索大语言模型(LLM):循环神经网络的深度解析与实战(RNN、LSTM 与 GRU)
一、循环神经网络(RNN) 1.1 基本原理 循环神经网络之所以得名,是因为它在处理序列数据时,隐藏层的节点之间存在循环连接。这意味着网络能够记住之前时间步的信息,并利用这些信息来处理当前的输入。 想象一下…...
山东大学软件学院创新项目实训开发日志(15)之中医知识问答历史对话查看bug处理后端信息响应成功但前端未获取到
在开发中医知识问答历史对话查看功能的时候,出现了前后端信息获取异同的问题,在经过非常非常非常艰难的查询之后终于解决了这一问题,而这一问题的罪魁祸首就是后端没有setter和getter方法!!!!&a…...
poj1067 取石子游戏 威佐夫博弈
题目 有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法, 一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者…...
优先级队列的实模拟实现
优先级队列底层默认用的是vector来存储数据,实现了类似我们数据结构中学习过的堆的队列,他的插入和删除都是优先级高先插入和删除。下面我们来模拟实现它们常见的接口来熟悉优先级队列。 仿函数 在介绍优先级队列之前,我们先熟悉一个概念&a…...
中国高校光芯片技术进展:前沿突破与产业化路径分析——基于材料、集成与系统协同创新的视角
引言:光电子技术的范式变革 随着摩尔定律逼近物理极限,光芯片技术成为突破电子芯片性能瓶颈的核心路径。光芯片以光子为载体,在传输速率(>100 Gbps)、能耗效率(<1 pJ/bit)及抗电磁干扰等…...
swagger 导入到apipost中
打开swagger json链接 保存到本地转为json格式文件 上传文件就行...
网安加·百家讲坛 | 刘志诚:AI安全风险与未来展望
作者简介:刘志诚,乐信集团信息安全中心总监、OWASP广东区域负责人、网安加社区特聘专家。专注于企业数字化过程中网络空间安全风险治理,对大数据、人工智能、区块链等新技术在金融风险治理领域的应用,以及新技术带来的技术风险治理…...
熵权法+TOPSIS+灰色关联度综合算法(Matlab实现)
熵权法TOPSIS灰色关联度综合算法(Matlab实现) 代码获取私信回复:熵权法TOPSIS灰色关联度综合算法(Matlab实现) 摘要: 熵权法TOPSIS灰色关联度综合算法(Matlab实现)代码实现了一种…...
React 中如何获取 DOM:用 useRef 操作非受控组件
📌 场景说明 在写 React 的时候,通常我们是通过“受控组件”来管理表单元素,比如用 useState 控制 <input> 的值。 但有些时候,控制的需求只是临时性的,或者完全不需要重新渲染组件,这时候直接访问…...
YAFFS2 的页缓存机制原理及配置优化方法详解
YAFFS2(Yet Another Flash File System 2)通过其独特的 页缓存机制 和 日志结构设计 优化了 NAND 闪存的读写性能与寿命。以下是其页缓存实现的核心机制及关键流程: 一、YAFFS2 页缓存架构 1. 缓存结构 YAFFS2 的页缓存基于 动态缓存池 设计…...
神经接口安全攻防:从技术漏洞到伦理挑战
随着脑机接口(BCI)技术的快速发展,神经接口设备已从实验室走向消费市场。然而,2025年曝光的某品牌脑机接口设备漏洞(CVE-2025-3278)引发了行业对神经数据安全的深度反思。本文围绕神经接口安全的核心矛盾&a…...
Clickhouse 配置参考
Clickhouse 配置参考 适用版本 21.3.9.84 config.xml 配置 <?xml version"1.0"?> <!--NOTE: User and query level settings are set up in "users.xml" file. --> <yandex><access_control_path>/data/clickhouse/clickhous…...
利用deepseek+Mermaid画流程图
你是一个产品经理,请绘制一个流程图,要求生成符合Mermaid语法的代码,要求如下: 用户下载文件、上传文件、删除文件的流程过程符合安全规范细节具体到每一步要做什么 graph LRclassDef startend fill:#F5EBFF,stroke:#BE8FED,str…...
高频面试题:Android MVP/MVVM/MVI这几种架构在实际生产中,各自的优缺点和适用场景是什么
安卓开发早期的架构模式相对简单,许多开发者直接在Activity或Fragment中堆砌业务逻辑和UI操作,这种方式虽然在小型项目中看似高效,但随着代码量的增加,很快就会导致逻辑混乱、难以测试和维护的问题。Activity和Fragment作为安卓框…...
leetcode0146. LRU 缓存-medium
1 题目:LRU 缓存 官方标定难度:中 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓…...
SuperMap iClient3D for WebGL 如何加载WMTS服务
在 SuperMap iClient3D for WebGL 中加载WMTS服务时,参数配置很关键!下面我们详细介绍如何正确填写参数,确保影像服务完美加载。 一、数据制作 对于上述视频中的地图制作,此处不做讲述,如有需要可访问:Onl…...
组件自身如何向外暴露一个子组件
最近在开发是遇到一个问题,原本是在组件内的一个功能被ui设计稿给搞到了外面,产品也不同意放在子组件内。于是一个问题就来,抽出来放到外面的部分依赖的也是组件内部的数据和逻辑,所以如果外面再重写这一部分,显然浪费感情,并且又要把依赖关系挪出去,也不划算。 于是,…...
《软件设计师》复习笔记(11.4)——处理流程设计、系统设计、人机界面设计
目录 一、业务流程建模 二、流程设计工具 三、业务流程重组(BPR) 四、业务流程管理(BPM) 真题示例: 五、系统设计 1. 主要目的 2. 设计方法 3. 主要内容 4. 设计原则 真题示例: 六、人机界面设…...
深入解析B站androidApp接口:从bilibili.api.ticket.v1.Ticket/GetTicket到SendMsg的技术分析
前言 最近一段时间,我对B站的App接口进行了深入分析,特别是关注了认证机制和私信功能的实现。通过逆向工程和网络抓包,发现了B站移动端API的底层工作原理,包括设备标识生成机制、认证流程和消息传输协议。本文将分享这些研究成果…...
#去除知乎中“盐选”付费故事
添加油猴脚本,去除知乎中“盐选”付费故事 // UserScript // name 盐选内容隐藏脚本 // namespace http://tampermonkey.net/ // version 0.2 // description 自动隐藏含有“盐选专栏”或“盐选”文字的回答卡片 // author YourName // mat…...
MATLAB脚本实现了一个转子系统的参数扫描和分岔分析
% 参数扫描范围 clc; clear; close all;S_values 500:200:20000; % 转速范围% 定义系统参数 N 5; % 质量点数量 num_nodes N; % 节点数 num_dofs_per_node 4; % 每个节点的自由度数 num_elements num_nodes-1; % 单元数 total_dofs num_nodes * num_dofs_per_node; % 总自…...
UWP发展历程
通用Windows平台(UWP)发展历程 引言 通用Windows平台(Universal Windows Platform, UWP)是微软为实现"一次编写,处处运行"的愿景而打造的现代应用程序平台。作为微软统一Windows生态系统的核心战略组成部分,UWP代表了从传统Win32应用向现代应…...
数据库相关概念,关系型数据库的核心要素,MySQL(特点,安装,环境变量配置,启动,停止,客户端连接),数据模型
目录 数据库相关概念 MySQL(特点,安装,环境变量配置,启动和停止,客户端连接) MySQL数据库的特点 Windows下安装MySQL MySQL 8.0.36(安装版) MySQL安装 配置Path环境变量 MySQ…...
Facebook隐私保护:从技术到伦理的探索
在这个数字化时代,隐私保护已成为公众关注的焦点。Facebook,作为全球最大的社交媒体平台之一,其用户隐私保护问题更是引起了广泛的讨论。本文将从技术层面和伦理层面探讨 Facebook 在隐私保护方面的努力和挑战。 技术层面的隐私保护 在技术…...
三维点拟合平面ransac c++
理论 平面的一般定义 在三维空间中,一个平面可以由两个要素唯一确定: 法向量 n(a,b,c):垂直于平面的方向 平面上一点 平面上任意一点 p(x,y,z) 满足: ( p − p 0 ) ∗ n 0 (p - p0) * n 0 (p−p0)∗n0 即 a ( x − x 0 ) …...
香港服务器CPU对比:Intel E3与E5系列核心区别与使用场景
香港服务器的 CPU 配置(核心数与主频)直接决定了其并发处理能力和数据运算效率,例如高频多核处理器可显著提升多线程任务响应速度。在实际业务场景中,不同负载需求对 CPU 架构的要求存在显著差异——以 Intel E3 和 E5 系列为例,由于两者在性…...
