当前位置: 首页 > article >正文

深度学习3.5 图像分类数据集

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

代码执行流程图

下载FashionMNIST数据集
定义标签转换函数
构建数据加载器
可视化第一批次图像
配置批量加载参数
测试数据加载速度
动态调整图像尺寸
验证调整后的数据形状

3.5.1 读取数据集

trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)

下载并加载FashionMNIST数据集
‌关键参数‌:
transform=trans:将图像转换为张量(形状 [1, 28, 28],值域 [0,1])。
download=True:若本地无数据则自动下载。
数据集结构‌:
训练集:60,000 张 28x28 灰度图像。
测试集:10,000 张 28x28 灰度图像。

def get_fashion_mnist_labels(labels):text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]

标签映射
将数字标签(0-9)转换为可读的文本标签(如 0 → ‘t-shirt’)。

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):figsize = (num_cols * scale, num_rows * scale)_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)axes = axes.flatten()for i, (ax, img) in enumerate(zip(axes, imgs)):if torch.is_tensor(img):ax.imshow(img.numpy())else:ax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])return axes

输入 imgs 可以是张量或PIL图像。
squeeze():移除单通道维度(1x28x28 → 28x28),否则 imshow 可能报错。
cmap=‘gray’:确保灰度图正确显示(默认可能为彩色)。

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

‌输出‌:显示 2行x9列 的图像网格,标题为对应的文本标签。
X.reshape(18, 28, 28):调整形状以匹配 imshow 的输入要求(原始形状为 18x1x28x28)。

在这里插入图片描述

3.5.2 读取小批量

batch_size = 256def get_dataloader_workers():return 4  # 根据CPU核心数调整(通常设为4-8)train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())

shuffle=True:打乱训练数据顺序,避免模型记忆批次。
num_workers=4:启用4个进程并行加载数据,加速数据读取。

timer = d2l.Timer()
for X, y in train_iter:continue
print(f'加载时间:{timer.stop():.2f} sec')

‘2.30 sec’

3.5.3 整合所有组件

def load_data_fashion_mnist(batch_size, resize=None):trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize)) # Resize必须在ToTensor前trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))

‌功能扩展‌:支持调整图像尺寸(如 resize=64 将图像缩放为 64x64)。
‌预处理顺序‌:
Resize(若指定)
ToTensor(转为张量并归一化)

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:print(f'X形状: {X.shape}, 数据类型: {X.dtype}')  # 输出如 torch.Size([32,1,64,64])print(f'y形状: {y.shape}, 数据类型: {y.dtype}')  # 输出如 torch.int64break

X形状: torch.Size([32, 1, 64, 64]), 数据类型: torch.float32
y形状: torch.Size([32]), 数据类型: torch.int64

X.shape = [batch_size, channels, height, width]
y 为标签张量,形状 [batch_size]

相关文章:

深度学习3.5 图像分类数据集

%matplotlib inline import torch import torchvision from torch.utils import data from torchvision import transforms from d2l import torch as d2l代码执行流程图 #mermaid-svg-WWhBmQvijswiICpI {font-family:"trebuchet ms",verdana,arial,sans-serif;font-…...

js原型链prototype解释

function Person(){} var personnew Person() console.log(啊啊,Person instanceof Function);//true console.log(,Person.__proto__Function.prototype);//true console.log(,Person.prototype.__proto__ Object.prototype);//true console.log(,Function.prototype.__prot…...

从M个元素中查找最小的N个元素时,使用大顶堆的效率比使用小顶堆更高,为什么?

我们有一个长度为 M 的数组,现在我们想从中找出 最小的 N 个元素。例如: int a[10] {12, 3, 5, 7, 19, 0, 8, 2, 4, 10};从中找出 最小的 4 个元素。 正确方法:使用大小为 N 的「大顶堆」 原因分析: 我们想保留最小的 4 个元素…...

【知识】性能优化和内存优化的主要方向

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 前言 现在有很多论文,乍一看很高级,实际上一搜全是现有技术的堆砌,但是这种裁缝式的论文依然能发表在很好的会议和期…...

VS Code + GitHub:高效开发工作流指南

目录 一、安装 & 基本配置 1.下载 VS Code 2.安装推荐插件(打开侧边栏 Extensions) 3.设置中文界面(可选) 二、使用 VS Code 操作 Git/GitHub 1.基本 Git 操作(不输命令行!) 2.连接 GitHub(第一次使用) 三、克隆远程仓库到 VS Code 方法一(推荐): 方…...

软件测试之接口测试常见面试

一、什么是(软件)接口测试? 接口测试:是测试系统组件间接口的一种测试方法 接口测试的重点:检查数据的交换,数据传递的正确性,以及接口间的逻辑依赖关系 接口测试的意义:在较早期开展,在软件开发的同时…...

发送百度地图的定位

在vuephp写的聊天软件项目中,增加一个发送百度地图的定位功能 在 Vue PHP 的聊天软件中增加发送百度地图定位功能,需要从前端定位获取、地图API集成、后端存储到消息展示全流程实现。以下是详细步骤: 一、前端实现(Vue/Uni-app…...

11、Refs:直接操控元素——React 19 DOM操作秘籍

一、元素操控的魔法本质 "Refs是巫师与麻瓜世界的连接通道,让开发者能像操控魔杖般精准控制DOM元素!"魔杖工坊的奥利凡德先生轻抚着魔杖,React/Vue的refs能量在杖尖跃动。 ——以神秘事务司的量子纠缠理论为基,揭示DOM…...

uniapp-商城-33-shop 布局搜索页面以及u-search

shop页面上有一个搜索&#xff0c;可以进行商品搜索&#xff0c;这里我们先做一个页面布局&#xff0c;后面再来进行数据i联动。 1、shop页面的搜索 2、搜索的页面代码 <navigator class"searchView" url"/pagesub/pageshop/search/search"> …...

npm的基本使用安装所有包,安装删除指定版本的包,配置命名别名

npm的基本使用安装所有包&#xff0c;安装删除指定版本的包&#xff0c;配置命名别名 安装所有依赖指定版本安装/删除包给 npm 脚本配置“命令别名&#xff08;自定义命令&#xff09;” ✅ 一、安装所有包&#xff08;恢复依赖&#xff09; 如果项目中已经存在 package.json…...

【dataframe显示不全问题】打开一个行列超多的excel转成df之后行列显示不全

出现问题如下图&#xff1a; 解决方案&#xff5e; display.width解决列显示不全 pd.set_option(display.max_columns,1000) pd.set_option(display.width, 1000) pd.set_option(display.max_colwidth,1000) pd.set_option(display.max_rows,1000)...

Windows下Golang与Nuxt项目宝塔部署指南

在Windows下将Golang后端和Nuxt前端项目打包&#xff0c;并使用宝塔面板部署的步骤如下 一、Golang后端打包 交叉编译为Linux可执行文件 在Windows PowerShell中执行&#xff1a; powershell复制下载 $env:GOOS "linux" $env:GOARCH "amd64" go build…...

真实趋势策略思路

该交易策略通过一系列技术指标的计算与逻辑判断&#xff0c;旨在捕捉市场趋势的反转与延续点&#xff0c;以实现盈利。其主要交易逻辑思路可以概括如下&#xff1a; 1. 趋势与动量分析 策略首先利用动量函数计算收盘价的短期&#xff08;3周期&#xff09;变化&#xff0c;通过…...

江奇霖惊喜亮相泡泡岛音乐节,新歌首唱+合作舞台燃动现场

2025年4月20日&#xff0c;江奇霖受邀参加2025泡泡岛音乐与艺术节东南站。现场献唱三首歌曲&#xff0c;超5万名观众现场一同感受音乐的魅力。 在泡泡岛SPECIAL SET特别企划舞台中&#xff0c;江奇霖带来新歌的首唱&#xff0c;温暖的旋律如低语倾诉&#xff0c;观众们也纷纷喊…...

【HarmonyOS】ArKUI框架

目录 概述 声明式开发范式 基于ArKUI的项目 • 1&#xff0e;创建资源文件 • 2&#xff0e;引用资源 • 3&#xff0e;引用系统资源&#xff1a; • 系统资源有哪些 • 4. 在配置和资源中引用资源 声明式语法 UI描述规范 UI组件概述 组件化 组件渲染控制语法 修改…...

使用 Nacos 的注意事项与最佳实践

&#x1f4f9; 背景 Nacos 凭借其强大&#x1f4aa;的服务发现、配置管理和服务管理能力&#xff0c;成为构建分布式系统的得力助手。然而&#xff0c;要充分发挥 Nacos 的优势&#xff0c;实现系统的高性能、高可用&#xff0c;掌握其使用过程中的注意事项和最佳实践至关…...

Megatron - LM 重要文件解析 - /tools/preprocess_data.py

preprocess_data.py 的主要功能。这是 Megatron-LM 的数据预处理脚本&#xff0c;主要用于将原始文本数据转换为模型训练所需的格式。 核心功能&#xff1a; 1. 数据预处理流程&#xff1a; 输入&#xff1a;原始文本文件&#xff08;JSON格式&#xff09; 处理&#xff1a…...

计算机网络八股——HTTP协议与HTTPS协议

目录 HTTP1.1简述与特性 1. 报文清晰易读 2. 灵活和易于扩展 3. ⽆状态 Cookie和Session 4. 明⽂传输、不安全 HTTP协议发展过程 HTTP/1.1的不足 HTTP/2.0 HTTP/3.0 HTTPS协议 HTTP协议和HTTPS协议的区别 HTTPS中的加密方式 HTTPS中建立连接的方式 前言&#xff…...

Unitest和pytest使用方法

unittest 是 Python 自带的单元测试框架&#xff0c;用于编写和运行可重复的测试用例。它的核心思想是通过断言&#xff08;assertions&#xff09;验证代码的行为是否符合预期。以下是 unittest 的基本使用方法&#xff1a; 1. 基本结构 1.1 创建测试类 继承 unittest.TestC…...

常用python爬虫框架介绍

文章目录 前言1. Scrapy2. BeautifulSoup 与 Requests 组合3. Selenium4. PySpider 前言 Python 有许多优秀的爬虫框架&#xff0c;每个框架都有其独特的特点和适用场景。以下为你详细介绍几个常用的 Python 爬虫框架&#xff1a; Python 3.13.2 安装教程&#xff08;附安装包…...

AI大模型:(二)2.3 预训练自己的模型

目录 1.预训练原理 2.预训练范式 1.未标注数据 2.标注数据 3.有正确答案、也有错误答案 3.手撕transform模型 3.1.transform模型代码 3.2.训练数据集 3.3.预训练 3.4.推理 4.如何选择模型 5.如何确定模型需要哪种训练 大模型预训练(Large-scale Pre-training…...

webpack基础使用了解(入口、出口、插件、加载器、优化、别名、打包模式、环境变量、代码分割等)

目录 1、webpack简介2、简单示例3、入口(entry)和输出(output)4、自动生成html文件5、打包css代码6、优化&#xff08;单独提取css代码&#xff09;7、优化&#xff08;压缩过程&#xff09;8、打包less代码9、打包图片10、搭建开发环境&#xff08;webpack-dev-server&#xf…...

数字后端设计 (四):时钟树综合——让芯片的「心跳」同步到每个角落

—— 试想全城的人要在同一秒按下开关——如果有的表快、有的表慢&#xff0c;结果会乱套&#xff01;时钟树综合就是给芯片内部装一套精准的“广播对时系统”&#xff0c;让所有电路踩着同一个节拍工作。 1. 为什么时钟如此重要&#xff1f; 芯片的「心跳」&#xff1a;时钟信…...

微信小程序 van-dropdown-menu

点击其他按钮&#xff0c;关闭van-dropdown-menu下拉框 DropdownMenu 引入页面使用index.wxmlindex.scssindex.ts(重点)index.ts(全部) DropdownMenu 引入 在app.json或index.json中引入组件 "usingComponents": {"van-dropdown-menu": "vant/weapp…...

智驱未来:AI大模型重构数据治理新范式

第一章 数据治理的进化之路 1.1 传统数据治理的困境 在制造业巨头西门子的案例中&#xff0c;其全球200个工厂每天产生1.2PB工业数据&#xff0c;传统人工清洗需要300名工程师耗时72小时完成&#xff0c;错误率高达15%。数据孤岛问题导致供应链决策延迟平均达48小时。 1.2 A…...

2025-04-22| Docker: --privileged参数详解

在 Docker 中&#xff0c;--privileged 是一个运行容器时的标志&#xff0c;它赋予容器特权模式&#xff0c;大幅提升容器对宿主机资源的访问权限。以下是 --privileged 的作用和相关细节&#xff1a; 作用 完全访问宿主机的设备&#xff1a; 容器可以访问宿主机的所有设备&am…...

[创业之路-380]:企业法务 - 企业经营中,企业为什么会虚开増值税发票?哪些是虚开増值税发票的行为?示例?风险?

一、动机与风险 1、企业虚开增值税发票的动机 利益驱动 骗抵税款&#xff1a;通过虚开发票虚增进项税额&#xff0c;减少应纳税额&#xff0c;降低税负。公司套取国家的利益。非法套现&#xff1a;虚构交易开具发票&#xff0c;将资金从公司账户转移至个人账户&#xff0c;用…...

C++ 蓄水池抽样算法

&#xff08;1&#xff09;概念 蓄水池抽样算法&#xff08;Reservoir Sampling&#xff09;是一种用于从 大规模数据集&#xff08;尤其是 流式数据 或 无法预先知晓数据总量 的场景&#xff09;中 等概率随机抽取固定数量样本 的算法。 &#xff08;2&#xff09;实现 我们…...

uniapp-x 二维码生成

支持X&#xff0c;二维码生成&#xff0c;支持微信小程序&#xff0c;android&#xff0c;ios&#xff0c;网页 - DCloud 插件市场 免费的单纯用爱发电的...

蓝桥杯算法实战分享:C/C++ 题型解析与实战技巧

蓝桥杯全国软件和信息技术专业人才大赛&#xff0c;作为国内知名的算法竞赛之一&#xff0c;吸引了众多编程爱好者参与。在蓝桥杯的赛场上&#xff0c;C/C 因其高效性和灵活性&#xff0c;成为了众多选手的首选语言。本文将结合蓝桥杯的赛制特点、常见题型以及实战案例&#xf…...