2025-05-14 Word Embedding
Word Embedding
词嵌入(Word Embedding)是自然语言处理(NLP)中的一种表征学习技术,旨在将单词映射为连续的低维向量,从而使计算机能够理解和处理文本信息。它通过学习大量文本数据中的上下文关系,将具有相似语义的词映射到向量空间中彼此接近的位置,实现词语的语义表示。
词嵌入的背景与意义
传统的文本表示方法如One-Hot编码,虽然简单直观,但存在维度高、稀疏且无法反映词与词之间语义无法关联的问题。例如,旅店和汽车旅店的One-Hot向量完全正交,无法体现他们的语义相似性
词嵌入通过将词映射到一个低维且密集的向量空间,既降低了维度,又保留了词语的语义信息,使得相似含义的词在向量空间中举例更近
词嵌入的原理
词嵌入基于分布式假设:即语境相似的词具有相似的含义。通过学习词的上下文信息,训练模型使得词向量能够捕捉词义。
其核心思想是构建一个映射函数,将词转为向量。这个过程通常分为两步:
-
词到初始向量的映射,如One-Hot编码
-
向量优化与降维:通过模型学习得到更合理的低维向量表示
主要生成方法
-
基于矩阵的分解方法:如利用词共现矩阵(亲和矩阵)进行奇异值分解(SVD),实现降维和语义捕捉
-
基于预测的神经网络模型:
-
CBOW:通过上下文词预测中心词
-
Skip-Gram:通过中心测预测上下文词
-
这两种模型通过最大化上下文词和中心测的共现频率,训练得到词向量,使得语义相关的词在向量空间中更接近
词嵌入的特点
-
无监督学习:只需大量未标注文本,通过上下文信息自动学习词义
-
低维密集表示:相比One-Hot高维稀疏向量,词嵌入向量维度更低且信息更丰富
-
保留语义关系:相似词向量距离近,支持计算词间相似度和关系推断
-
易于下游任务使用:词向量可作为输入特征,提升文本分类、机器翻译、问答等任务效果
词嵌入广泛应用于文本分类、情感分析、机器翻译、信息检索、问答系统等多种NLP任务,是现代自然语言处理的基础技术之一。词嵌入通过将单词映射为低维向量,有效捕捉词语间的语义关系,解决了传统表示方法的不足,成为自然语言处理领域不可或缺的核心技术。
相关文章:
2025-05-14 Word Embedding
Word Embedding 词嵌入(Word Embedding)是自然语言处理(NLP)中的一种表征学习技术,旨在将单词映射为连续的低维向量,从而使计算机能够理解和处理文本信息。它通过学习大量文本数据中的上下文关系ÿ…...

YOLO11解决方案之热力图探索
概述 Ultralytics提供了一系列的解决方案,利用YOLO11解决现实世界的问题,包括物体计数、模糊处理、热力图、安防系统、速度估计、物体追踪等多个方面的应用。 使用YOLO11生成的热力图把复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色…...

如何在终端/命令行中把PDF的每一页转换成图片(PNG)
今天被对象安排了一个任务: 之前自己其实也有这个需要,但是吧,我懒:量少拖拽,量大就放弃。但这次躲不过去了,所以研究了一下有什么工具可以做到这个需求。 本文记录我这次发现的使用 XpdfReader 的方法。…...

计算机系统结构——Cache性能分析
一、实验目的 加深对Cache的基本概念、基本组织结构以及基本工作原理的理解。掌握Cache容量、相联度、块大小对Cache性能的影响。掌握降低Cache不命中率的各种方法以及这些方法对提高Cache性能的好处。理解LRU与随机法的基本思想以及它们对Cache性能的影响。 二、实验平台 实…...
C++ 在 Windows 的开发经验与解决方案
一、开发环境搭建 在 Windows 上进行 C 开发,主流的集成开发环境(IDE)有 Visual Studio 和 CLion。Visual Studio 是微软官方推出的强大开发工具,对 Windows 平台有着原生的支持,集成了编译器、调试器、代码编辑器等一…...

GESP2023年12月认证C++八级( 第三部分编程题(2)大量的工作沟通)
参考程序: #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <string> #include <map> #include <iostream> #include <cmath> #include <vector> #include <qu…...
LeetCode 题解 41. 缺失的第一个正数
41. 缺失的第一个正数 给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1: 输入:nums [1,2,0] 输出:3 解释:范围 [1,…...

015枚举之滑动窗口——算法备赛
滑动窗口 最大子数组和 题目描述 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 原题链接 思路分析 见代码注解 代码 int maxSubArray(vector<int>& num…...
SQL 索引优化指南:原理、知识点与实践案例
SQL 索引优化指南:原理、知识点与实践案例 索引的基本原理 索引是数据库中用于加速数据检索的数据结构,类似于书籍的目录。它通过创建额外的数据结构来存储部分数据,使得查询可以快速定位到所需数据而不必扫描整个表。 索引的工作原理 B-…...
centos服务器,疑似感染phishing家族钓鱼软件的检查
如果怀疑 CentOS 服务器感染了 Phishing 家族钓鱼软件,需要立即进行全面检查并采取相应措施。以下是详细的检查和处理步骤: 1. 立即隔离服务器 如果可能,将服务器从网络中隔离,以防止进一步传播或数据泄露。如果无法完全隔离&…...

新型深度神经网络架构:ENet模型
语义分割技术能够为图像中的每个像素分配一个类别标签,这对于理解图像内容和在复杂场景中找到目标对象至关重要。在自动驾驶和增强现实等应用中,实时性是一个硬性要求,因此设计能够快速运行的卷积神经网络非常关键。 尽管深度卷积神经网络&am…...

【免杀】C2免杀技术(三)shellcode加密
前言 shellcode加密是shellcode混淆的一种手段。shellcode混淆手段有多种:加密(编码)、偏移量混淆、UUID混淆、IPv4混淆、MAC混淆等。 随着杀毒软件的不断进化,其检测方式早已超越传统的静态特征分析。现代杀软往往会在受控的虚…...
3、ubantu系统docker常用命令
1、自助查看docker命令 1.1、查看所有命令 docker 客户端非常简单,可以直接输入 docker 命令来查看到 Docker 客户端的所有命令选项。 angqiangwangqiang:~$ dockerUsage: docker [OPTIONS] COMMANDA self-sufficient runtime for containersCommon Commands:ru…...
【Linux】shell内置命令fg,bg和jobs
Shell 内置命令 fg(foreground 的缩写)。它用于将后台挂起的任务恢复到前台运行。 例如: 假设你运行了一个耗时的 SVN 操作(如 svn update 或 svn checkout)。按下 CtrlZ 将该进程挂起到后台。输入 fg…...
Java GUI开发全攻略:Swing、JavaFX与AWT
Swing 界面开发 Swing 是 Java 中用于创建图形用户界面(GUI)的库。它提供了丰富的组件,如按钮、文本框、标签等。 import javax.swing.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;public class SwingExa…...

WPF之集合绑定深入
文章目录 引言ObservableCollection<T>基础什么是ObservableCollectionObservableCollection的工作原理基本用法示例ObservableCollection与MVVM模式ObservableCollection的局限性 INotifyCollectionChanged接口深入接口定义与作用NotifyCollectionChangedEventArgs详解自…...
LeetCode 每日一题 3341. 到达最后一个房间的最少时间 I + II
3341. 到达最后一个房间的最少时间 I II 有一个地窖,地窖中有 n x m 个房间,它们呈网格状排布。 给你一个大小为 n x m 的二维数组 moveTime ,其中 moveTime[i][j] 表示在这个时刻 以后 你才可以 开始 往这个房间 移动 。你在时刻 t 0 时从…...

(C语言)超市管理系统(测试2版)(指针)(数据结构)(清屏操作)
目录 前言: 源代码: product.h product.c fileio.h fileio.c main.c 代码解析: 一、程序结构概述 二、product.c 函数详解 1. 初始化商品列表 Init_products 2. 添加商品 add_product 3. 显示商品 display_products 4. 修改商品 mo…...
什么是虚拟同步发电机
虚拟同步发电机(Virtual Synchronous Generator, VSG) 是一种基于电力电子技术的先进控制策略,通过模拟传统同步发电机的机电特性和动态行为,使逆变器或储能系统能够像传统发电机一样为电网提供惯性支撑、频率调节和电压稳定性支持…...
Python字符串全面指南:从基础到高级
文章目录 Python字符串全面指南:从基础到高级1. 字符串基础概念2. 字符串的基本操作2.1 字符串拼接2.2 字符串索引和切片 3. 字符串常用方法3.1 大小写转换3.2 字符串查找和替换3.3 字符串分割和连接3.4 字符串格式化3.5 字符串验证 4. 字符串的不可变性5. 字符串编…...
基于大模型的TIA诊疗全流程智能决策系统技术方案
目录 一、多模态数据融合与预处理系统1.1 数据接入模块1.2 数据预处理伪代码二、TIA智能预测模型系统2.1 模型训练流程2.2 混合模型架构伪代码三、术中智能监测系统3.1 实时监测流程3.2 实时预测伪代码四、智能诊疗决策系统4.1 手术方案推荐流程4.2 麻醉方案生成伪代码五、预后…...

编译openssl源码
openssl版本 1.1.1c windows 安装环境 perl 先安装perl,生成makefile需要 https://strawberryperl.com/releases.html nasm nasm 也是生成makefile需要 https://www.nasm.us/ 安装完perl输入一下nasm,看看能不能找到,找不到的话需要配…...
CMake入门与实践:现代C++项目的构建利器
文章目录 CMake入门与实践:现代C项目的构建利器引言什么是CMake?快速入门:从Hello World开始1. 安装CMake2. 最小项目示例3. 构建项目 核心概念详解1. 项目结构组织2. 常用指令3. 变量与条件控制 进阶技巧1. 多目录项目管理2. 集成第三方库3.…...

OpenCV实现数字水印的相关函数和示例代码
OpenCV计算机视觉开发实践:基于Qt C - 商品搜索 - 京东 实现数字水印的相关函数 用OpenCV来实现数字水印功能,需要使用一些位操作函数,我们需要先了解一下这些函数。 1. bitwise_and函数 bitwise_and函数是OpenCV中的位运算函数之一&…...
BMS工具箱用来执行贝叶斯模型平均(BMA)计算模块
贝叶斯模型平均(Bayesian Model Averaging,BMA)是一种用于处理模型不确定性的统计方法,通过结合多个模型的预测结果来提高预测的准确性和鲁棒性。在 MATLAB 中,可以使用专门的工具箱(如 BMS 工具箱…...

坐席业绩数据分析
豆包提示词: 使用papaparse.js,chart.js,tailwindcss和font-awesome,生成一个可以交互的简洁且可以运行的HTML代码,不要输出无关内容。 具体要求如下: 1、按坐席姓名输出业绩折线图。 2、系统导航区域&…...
国产大模型 “五强争霸”,决战 AGI
中国 AI 大模型市场正经历一场史无前例的洗牌!曾经 “百模混战” 的局面已落幕,字节、阿里、阶跃星辰、智谱和 DeepSeek 五大巨头强势崛起,形成 “基模五强” 新格局。这场竞争不仅是技术实力的较量,更是资源、人才与生态的全面博…...

怎样将MM模块常用报表设置为ALV默认格式(MB52、MB5B、ME2M、ME1M等)
【SAP系统研究】 对SAP系统中的报表,最方便的格式就是ALV了,可排序、可导出,非常友好。 但有些常见报表却不是默认ALV界面的,譬如MB52: 是不是有点别扭?但其实是可以后台配置进行调整的。 现将一些常用报表修改为默认ALV的方法进行总结,便于大家使用。 一、MB52、MB5…...
Spark 集群配置、启动与监控指南
Spark 集群的配置和启动需要几个关键步骤。以下是完整的操作流程,包含配置修改、集群启动、任务提交和常见错误排查方法。 1. 修改 Spark 配置文件 首先需要编辑 Spark 配置文件,设置集群参数: bash # 进入 Spark 配置目录 cd $SPARK_HOM…...
前端面试每日三题 - Day 34
这是我为准备前端/全栈开发工程师面试整理的第34天每日三题练习: ✅ 题目1:WebGPU图形编程实战指南 核心概念 // WebGPU初始化流程 const adapter await navigator.gpu.requestAdapter(); const device await adapter.requestDevice();// 渲染管线配…...