# 2-STM32F103-复位和时钟控制RCC
STM32-复位和时钟控制RCC
- 2-STM32-复位和时钟控制RCC
- 摘要
- 说明
- 本文参考资料如下:
- 一、STM32最小系统回顾
- STM32F103C8T6核心板原理图
- 二、复位
- 三、时钟
- 3.1 时钟树
- 3.2 STM32启动过程
- 3.2 SystemInit()函数
- 3.2.1 SystemInit()第1句:
- 3.2.2 SystemInit()第2句:
- 3.2.3 SystemInit()第3句:
- 3.3 SetSysClock()函数:
- 3.4 SetSysClockTo72()函数:
- 3.4.1 SetSysClockTo72()第1句:
- 3.4.2 SetSysClockTo72()第2句:
- 3.4.3 SetSysClockTo72()第3句:
- 3.4.4 SetSysClockTo72()第4句:
- 3.4.5 SetSysClockTo72()第5句:
- 3.4.6 SetSysClockTo72()第6句:
- 3.4.7 SetSysClockTo72()第7句:
- 四、标准库与HAL库区别
- 4.1 HAL库SystemInit()函数
- 4.1 HAL库配置系统时钟为72MHz函数
- 4.1.1 Stm32_Clock_Init函数
- 4.1 HAL库配置系统时钟为72MHz函数
- 五、总结
- 六、资料连接
2-STM32-复位和时钟控制RCC
摘要
在上一篇文章中,我们讲解了STM32F103C8T6最小系统中复位和时钟硬件部分,在本章中讲解最小系统中的复位和时钟的软件部分。本文章根据《1-STM32F10x-中文参考手册》的第6节复位和时钟为依据,并介绍时钟源选择外部8MHz晶震HSE,通过SystemInit()函数将STM32时钟配置为72HMz的代码,并在最后对比标准库和HAL库对时钟配置的不同。
说明
本系列,将整理STM32F103内置外设的使用,“基于标准库“进行学习开发,并将手册说明与标准库代码进行对应学习,在文章最后提供本系列中参考的文章和工程代码下载链接。
本文参考资料如下:
## 1.硬件平台
STM32F103C8T6最小系统板
## 2.软件平台
MDK5
## 3.参考文档
1.《1-STM32F10x-中文参考手册》
2.《3-STM32F103xCDE数据手册-中文》
3. 《STM32F103C8T6核心板原理图》
4.《Cortex-M3权威指南》
一、STM32最小系统回顾
在上一节STM32最小系统中,讲解了STM32最小系统由:电源、时钟、下载、复位、启动五个部分组成,本文主要讲解时钟和复位两个部分,因为这两个部分和后续编程紧密相连,而电源、下载、启动三个部分相对固定,编程上不需要太多改动。
STM32F103C8T6核心板原理图
图中标红的两个部分,时钟和复位就是本文要讲述的部分。复位使用NRST引脚复位,时钟使用外部晶体震荡器HSE
二、复位
由《1-STM32F10x-中文参考手册》的第6节复位和时钟可知,STM32复位方式有三类:系统复位、上电复位、备份区域复位,其中系统复位包含了:NRST引脚复位。
由系统复位方式可知:一共有5种复位方式,STM32最小系统中的复位就是NRST引脚复位,是硬件复位方式,也是最常用的一种复位方式。其余四种都是软件复位,IWDG、WWDG、SW三种复位方式,在后续看门狗实验时讲解。低功耗复位在低功耗实验时讲解。
三、时钟
根据《1-STM32F10x-中文参考手册》的第6节时钟部分可知,STM32F103有5种时钟源,但是系统时钟源SYSCLK只有三种选择,HSE、HSI、PLL,LSI和LSE两种低速时钟是提供给RTC和IWDG使用。其中HSE和LSE是需要我们自己外接晶振的,HSI和LSI是STM32F103C8T6内置的,PLL是取自HSE或HSI。由于HSI不精确,所以为了系统时钟SYSCLK能达到72MHz,我们只能选择HSE。如果没有外接HSE的话,单片机会自动使用内部8MHz的HSI作为系统时钟SYSCLK,此时系统时钟就只有8MHz,且不精确。
3.1 时钟树
时钟树是《1-STM32F10x-中文参考手册》的第6节时钟的图,此图介绍了5种时钟源是如何提供给单片机内部其它外设的,我们本文主要关心图中红色线:通过外接8MHz晶振,并通过倍频器PLL进行9倍放大后,得到72MHz的系统时钟SYSCLK的过程。外接8MHz晶振我们在STM32最小系统中,我们已经连接了时钟电路,即已经接好了外部8MHz晶振,接下来我们通过SystemInit()函数配置RCC的时钟控制寄存器CR和时钟配置寄存器CFGR,将SYSCLK配置为72MHz。
注:图中梯形表示选择器,矩形表示执行器。
3.2 STM32启动过程
单片机上电后第一行执行的代码是汇编文件startup_stm32f10x_md.s中的Reset_Handler标签,然后执行SystemInit()后才执行main()。所以在执行我们的main()函数之前,单片机会执行SystemInit()函数将单片机时钟配置为72MHz。
; Reset handler
Reset_Handler PROCEXPORT Reset_Handler [WEAK]IMPORT __mainIMPORT SystemInitLDR R0, =SystemInitBLX R0LDR R0, =__mainBX R0ENDP
3.2 SystemInit()函数
在SystemInit()函数中会调用SetSysClock()—>>SetSysClockTo72(),SetSysClockTo72()执行完后STM32系统时钟为72MHz,是8MHz外部高速晶振HSE通过PLL进行9倍频后得到。
void SystemInit (void)
{/* Reset the RCC clock configuration to the default reset state(for debug purpose) *//* Set HSION bit */RCC->CR |= (uint32_t)0x00000001;/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CLRCC->CFGR &= (uint32_t)0xF8FF0000;
#elseRCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */ /* Reset HSEON, CSSON and PLLON bits */RCC->CR &= (uint32_t)0xFEF6FFFF;/* Reset HSEBYP bit */RCC->CR &= (uint32_t)0xFFFBFFFF;/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */RCC->CFGR &= (uint32_t)0xFF80FFFF;#ifdef STM32F10X_CL/* Reset PLL2ON and PLL3ON bits */RCC->CR &= (uint32_t)0xEBFFFFFF;/* Disable all interrupts and clear pending bits */RCC->CIR = 0x00FF0000;/* Reset CFGR2 register */RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)/* Disable all interrupts and clear pending bits */RCC->CIR = 0x009F0000;/* Reset CFGR2 register */RCC->CFGR2 = 0x00000000;
#else/* Disable all interrupts and clear pending bits */RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)#ifdef DATA_IN_ExtSRAMSystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */
#endif /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers *//* Configure the Flash Latency cycles and enable prefetch buffer */SetSysClock();#ifdef VECT_TAB_SRAMSCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#elseSCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
}
3.2.1 SystemInit()第1句:
/* Reset the RCC clock configuration to the default reset state(for debug purpose) *//* Set HSION bit */RCC->CR |= (uint32_t)0x00000001;
这一行通过位或运算,将RCC->CR寄存器最低位置1,开启HSI时钟。这一句其实我感觉不要也是可以的,因为手册中CR寄存器复位值是0x0000 xx83,即HSION默认值就是1。
3.2.2 SystemInit()第2句:
/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CLRCC->CFGR &= (uint32_t)0xF8FF0000;
其中#ifndef STM32F10X_CL条件成立,因为在STM32F103C8T6标准库中,并没有定义这个宏,因此执行RCC->CFGR &= (uint32_t)0xF8FF0000;正如备注所示是复位SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits。对照时钟复位寄存器CFGR中说明,0x00转化二进制是0000 0000,即SW[1:0]被置为00,HPRE[3:0]被置为0000,PPRE1[2:0]被置为000,PPRE2[2:0]被置为000,ADCPRE[1:0]被置为00。0xF8转为二进制是1111 1000,即MCO[2:0]被置为000。
3.2.3 SystemInit()第3句:
/* Reset HSEON, CSSON and PLLON bits */RCC->CR &= (uint32_t)0xFEF6FFFF;/* Reset HSEBYP bit */RCC->CR &= (uint32_t)0xFFFBFFFF;/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */RCC->CFGR &= (uint32_t)0xFF80FFFF;
这三句和备注一样,对应查看CR寄存器和CFGR寄存器对应位说明,将右边的16进制数转化位二进制后对应查看。
3.3 SetSysClock()函数:
static void SetSysClock(void)
{
#ifdef SYSCLK_FREQ_HSESetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHzSetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHzSetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHzSetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHzSetSysClockTo56();
#elif defined SYSCLK_FREQ_72MHzSetSysClockTo72();
#endif/* If none of the define above is enabled, the HSI is used as System clocksource (default after reset) */
}
在system_stm32F10x.c的115行定义了宏SYSCLK_FREQ_72MHz,所以会执行 SetSysClockTo72()。
3.4 SetSysClockTo72()函数:
static void SetSysClockTo72(void)
{__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;} if (HSEStatus == (uint32_t)0x01){/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 2 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2; /* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;#ifdef STM32F10X_CL/* Configure PLLs ------------------------------------------------------*//* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz *//* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);/* Enable PLL2 */RCC->CR |= RCC_CR_PLL2ON;/* Wait till PLL2 is ready */while((RCC->CR & RCC_CR_PLL2RDY) == 0){}/* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL9);
#else /* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL *//* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}}else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
}
在SetSysClockTo72()函数中,开启了HSE,并配置了PLL进行9倍频,然后将SYSCLK配置为72MHz。
3.4.1 SetSysClockTo72()第1句:
/* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON);
时钟控制寄存器CR的bit16是HSEON,将这一位置1,即可开启外部高速时钟HSE。通过按F12跳转到定义发现,在stm32f10x.h中RCC_CR_HSEON定义如下,转换成二进制后,刚好是bit16为1,通过位或运算”|=“将bit16置1,而其它位不变。
#define RCC_CR_HSEON ((uint32_t)0x00010000) /*!< External High Speed clock enable */
3.4.2 SetSysClockTo72()第2句:
/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;}
等待HSE稳定,并设置超时时间HSE_STARTUP_TIMEOUT,HSE稳定后将HSEStatus标志位置1,然后进行后续配置,如果失败置为0,默认使用8MHz的HSI作为系统时钟。
3.4.3 SetSysClockTo72()第3句:
if (HSEStatus == (uint32_t)0x01){/* Enable Prefetch Buffer */FLASH->ACR |= FLASH_ACR_PRFTBE;/* Flash 2 wait state */FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
这几句是配置FLASH的等待周期的,详情需要查看《STM32F10xxx闪存编程手册》。
3.4.4 SetSysClockTo72()第4句:
/* HCLK = SYSCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK */RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
这三句配置三条总线HCLK、PCLK2和PCLK1的时钟频率。即将PCLK2=HCLK = SYSCLK,PCLK1=HCLK/2。此时SYSCLK还不是72MHz,因为还没有配置PLL进行9倍频。
3.4.5 SetSysClockTo72()第5句:
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |RCC_CFGR_PLLMULL));RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
这两句将PLL配置为对HSE进行9倍频。此时PLL时钟为72MHz。
3.4.6 SetSysClockTo72()第6句:
/* Enable PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Select PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08){}
这几句是开启PLL时钟,并将其作为SYSCLK时钟源,等待PLL时钟稳定后,即可退出。此时SYSCLK为72MHz,PCLK2=HCLK = SYSCLK=72MHz,PCLK1=HCLK/2=36MHz。
3.4.7 SetSysClockTo72()第7句:
else{ /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */}
此段代码是 如果HSE初始化失败,那么默认使用HSI作为SYSCLK时钟,我们也可以在此处进行我们自己的处理,但是通常都不会进行处理。
四、标准库与HAL库区别
共同点:单片机上电后会立即执行启动文件中的Reset_Handler标签,然后调用SystemInit()函数。
不同点:SystemInit()函数实现不一样,HAL库中SystemInit()函数不会调用 SetSysClock()将系统时钟初始化为72MHz,而是需要我们在main()函数中自己初始化为72Mhz。
4.1 HAL库SystemInit()函数
void SystemInit (void)
{/* Reset the RCC clock configuration to the default reset state(for debug purpose) *//* Set HSION bit */RCC->CR |= (uint32_t)0x00000001;/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#if !defined(STM32F105xC) && !defined(STM32F107xC)RCC->CFGR &= (uint32_t)0xF8FF0000;
#elseRCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */RCC->CR &= (uint32_t)0xFEF6FFFF;/* Reset HSEBYP bit */RCC->CR &= (uint32_t)0xFFFBFFFF;/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */RCC->CFGR &= (uint32_t)0xFF80FFFF;#if defined(STM32F105xC) || defined(STM32F107xC)/* Reset PLL2ON and PLL3ON bits */RCC->CR &= (uint32_t)0xEBFFFFFF;/* Disable all interrupts and clear pending bits */RCC->CIR = 0x00FF0000;/* Reset CFGR2 register */RCC->CFGR2 = 0x00000000;
#elif defined(STM32F100xB) || defined(STM32F100xE)/* Disable all interrupts and clear pending bits */RCC->CIR = 0x009F0000;/* Reset CFGR2 register */RCC->CFGR2 = 0x00000000;
#else/* Disable all interrupts and clear pending bits */RCC->CIR = 0x009F0000;
#endif /* STM32F105xC */#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)#ifdef DATA_IN_ExtSRAMSystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */
#endif #ifdef VECT_TAB_SRAMSCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#elseSCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
}
最后没有调用 SetSysClock();也就不会调用 SetSysClockTo72();
4.1 HAL库配置系统时钟为72MHz函数
int main(void)
{HAL_Init(); //初始化HAL库 Stm32_Clock_Init(RCC_PLL_MUL9); //设置时钟,72Mwhile(1){}
}
需要我们编写 Stm32_Clock_Init()函数。
4.1.1 Stm32_Clock_Init函数
4.1 HAL库配置系统时钟为72MHz函数
void Stm32_Clock_Init(u32 PLL)
{HAL_StatusTypeDef ret = HAL_OK;RCC_OscInitTypeDef RCC_OscInitStructure; RCC_ClkInitTypeDef RCC_ClkInitStructure;RCC_OscInitStructure.OscillatorType=RCC_OSCILLATORTYPE_HSE; //时钟源为HSERCC_OscInitStructure.HSEState=RCC_HSE_ON; //打开HSERCC_OscInitStructure.HSEPredivValue=RCC_HSE_PREDIV_DIV1; //HSE预分频RCC_OscInitStructure.PLL.PLLState=RCC_PLL_ON; //打开PLLRCC_OscInitStructure.PLL.PLLSource=RCC_PLLSOURCE_HSE; //PLL时钟源选择HSERCC_OscInitStructure.PLL.PLLMUL=PLL; //主PLL倍频因子ret=HAL_RCC_OscConfig(&RCC_OscInitStructure);//初始化if(ret!=HAL_OK) while(1);//选中PLL作为系统时钟源并且配置HCLK,PCLK1和PCLK2RCC_ClkInitStructure.ClockType=(RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2);RCC_ClkInitStructure.SYSCLKSource=RCC_SYSCLKSOURCE_PLLCLK; //设置系统时钟时钟源为PLLRCC_ClkInitStructure.AHBCLKDivider=RCC_SYSCLK_DIV1; //AHB分频系数为1RCC_ClkInitStructure.APB1CLKDivider=RCC_HCLK_DIV2; //APB1分频系数为2RCC_ClkInitStructure.APB2CLKDivider=RCC_HCLK_DIV1; //APB2分频系数为1ret=HAL_RCC_ClockConfig(&RCC_ClkInitStructure,FLASH_LATENCY_2); //同时设置FLASH延时周期为2WS,也就是3个CPU周期。if(ret!=HAL_OK) while(1);
}
调用HAL库HAL_RCC_ClockConfig()函数实现将SYSCLK配置为72MHz。
五、总结
通过标准库和HAL库对比,将STM32系统时钟SYSCLK配置为72MHz既可以在main()函数之前,也可以在main()函数里面,即在使用其它片上外设之前都可以。虽然标准库和HAL库调用的库函数不一样,但是最底层都是配置的RCC的CR和CFGR寄存器,只是封装不同而已,所以我们得熟悉手册对RCC使用的说明,再结合标准库和HAL库进行学习,才能理解得更加透彻。
六、资料连接
https://gitee.com/muzi_wood/stm32-f103
相关文章:

# 2-STM32F103-复位和时钟控制RCC
STM32-复位和时钟控制RCC 2-STM32-复位和时钟控制RCC摘要说明本文参考资料如下: 一、STM32最小系统回顾STM32F103C8T6核心板原理图 二、复位三、时钟3.1 时钟树3.2 STM32启动过程3.2 SystemInit()函数3.2.1 SystemInit()第1句:3.2.2 SystemInit()第2句&a…...

多模态大语言模型arxiv论文略读(七十五)
PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM ➡️ 论文标题:PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM ➡️ 论文作者:Tao Yang, Yingmin Luo, Zhongang Qi, Yang Wu, Ying Shan, C…...
Angular 知识框架
一、Angular 基础 1. Angular 简介 Angular 是什么? 基于 TypeScript 的前端框架(Google 维护)。 适用于构建单页应用(SPA)。 核心特性 组件化架构 双向数据绑定 依赖注入(DI) 模块化设计…...
企业数字化转型背景下的企业知识管理挑战与经验杂谈
一、引言 在数字化转型的浪潮下,企业知识管理正面临前所未有的挑战。随着数据量的急剧增长,企业内部积累的信息呈现出碎片化、分散化的趋势,传统的知识管理体系已难以有效应对这一变革。首先,信息碎片化问题日益严重,…...

使用frp实现客户端开机自启(含静默运行脚本)
本文整理了如何使用 frp 客户端并实现 Windows 系统下的开机静默自启,适合远程桌面、内网穿透等场景。 📁 目录结构 我将 frp 客户端文件放置在以下路径: F:\git\frp>tree /f 卷 其它 的文件夹 PATH 列表 卷序列号为 A123-0F4E F:. │ …...

list 容器常见用法及实现
文章目录 1. list 的介绍与使用1.1 list 的介绍1.2 list 的使用1.2.1 list 的构造1.2.2 list iterator 的使用1.2.3 list capacity1.2.4 list element access1.2.5 list modifiers1.2.6 迭代器失效问题 2. list 的模拟实现2.1 值得注意的点:2.2 std::initializer_li…...

iOS视频编码详细步骤(视频编码器,基于 VideoToolbox,支持硬件编码 H264/H265)
iOS视频编码详细步骤流程 1. 视频采集阶段 视频采集所使用的代码和之前的相同,所以不再过多进行赘述 初始化配置: 通过VideoCaptureConfig设置分辨率1920x1080、帧率30fps、像素格式kCVPixelFormatType_420YpCbCr8BiPlanarFullRange设置摄像头位置&am…...

浅析 Golang 内存管理
文章目录 浅析 Golang 内存管理栈(Stack)堆(Heap)堆 vs. 栈内存逃逸分析内存逃逸产生的原因避免内存逃逸的手段 内存泄露常见的内存泄露场景如何避免内存泄露?总结 浅析 Golang 内存管理 在 Golang 当中,堆…...
记录: Windows下远程Liunx 系统xrdp 用到的一些小问题(免费踩坑 记录)
采用liunx Ubuntu22.04版本以下,需要安装 xrdp 或者VNC 具体过程就是下载 在linux命令行里 首先更新软件包:sudo apt update 安装xrdp服务:sudo apt install xrdp 启动XRDP:sudo systemctl start xrdp(如果在启动的…...

C++ 并发编程(1)再学习,为什么子线程不调用join方法或者detach方法,程序会崩溃? 仿函数的线程启动问题?为什么线程参数默认传参方式是值拷贝?
本文的主要学习点,来自 这哥们的视频内容,感谢大神的无私奉献。你可以根据这哥们的视频内容学习,我这里只是将自己不明白的点,整理记录。 C 并发编程(1) 线程基础,为什么线程参数默认传参方式是值拷贝?_哔…...

【Python 算法零基础 2.模拟 ④ 基于矩阵】
目录 基于矩阵 Ⅰ、 2120. 执行所有后缀指令 思路与算法 ① 初始化结果列表 ② 方向映射 ③ 遍历每个起始位置 ④ 记录结果 Ⅱ、1252. 奇数值单元格的数目 思路与算法 ① 初始化矩阵 ② 处理每个操作 ③ 统计奇数元素 Ⅲ、 832. 翻转图像 思路与算法 ① 水平翻转图像 ② 像素值…...

【教程】Docker方式本地部署Overleaf
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 背景说明 下载仓库 初始化配置 修改监听IP和端口 自定义网站名称 修改数据存放位置 更换Docker源 更换Docker存储位置 启动Overleaf 创…...

3337|3335. 字符串转换后的长度 I(||)
1.字符串转换后的长度 I 1.1题目 3335. 字符串转换后的长度 I - 力扣(LeetCode) 1.2解析 递推法解析 思路框架 我们可以通过定义状态变量来追踪每次转换后各字符的数量变化。具体地,定义状态函数 f(i,c) 表示经过 i 次转换后࿰…...

PHP黑白胶卷底片图转彩图功能 V2025.05.15
关于底片转彩图 传统照片底片是摄影过程中生成的反色图像,为了欣赏照片,需要通过冲印过程将底片转化为正像。而随着数字技术的发展,我们现在可以使用数字工具不仅将底片转为正像,还可以添加色彩,重现照片原本的色彩效…...

字符串检索算法:KMP和Trie树
目录 1.引言 2.KMP算法 3.Trie树 3.1.简介 3.2.Trie树的应用场景 3.3.复杂度分析 3.4.Trie 树的优缺点 3.5.示例 1.引言 字符串匹配,给定一个主串 S 和一个模式串 P,判断 P 是否是 S 的子串,即找到 P 在 S 中第一次出现的位置。暴力匹…...
Java大师成长计划之第22天:Spring Cloud微服务架构
📢 友情提示: 本文由银河易创AI(https://ai.eaigx.com)平台gpt-4o-mini模型辅助创作完成,旨在提供灵感参考与技术分享,文中关键数据、代码与结论建议通过官方渠道验证。 随着企业应用的不断扩展,…...
瀑布模型VS敏捷模型VS喷泉模型
目录 1. 瀑布模型(Waterfall Model) 2. 敏捷模型(Agile Model) 3. 喷泉模型(Fountain Model)...

基于.Net开发的网络管理与监控工具
从零学习构建一个完整的系统 平常项目上线后,不仅意味着开发的完成,更意味着项目正式进入日常运维阶段。在这个阶段,网络的监控与管理也是至关重要的,这时候就需要一款网络管理工具,可以协助运维人员用于日常管理&…...

Python并发编程:开启性能优化的大门(7/10)
1.引言 在当今数字化时代,Python 已成为编程领域中一颗璀璨的明星,占据着编程语言排行榜的榜首。无论是数据科学、人工智能,还是 Web 开发、自动化脚本编写,Python 都以其简洁的语法、丰富的库和强大的功能,赢得了广大…...
Linux 中 open 函数的本质与细节全解析
一、open简介 在 Linux 下,一切皆文件。而对文件的读写,离不开文件的“打开”操作。虽然 C 语言标准库提供了方便的 fopen,但更底层、更强大的是系统调用 open,掌握它能让你对文件系统控制更细致,在系统编程、驱动开发…...
llama.cpp无法使用gpu的问题
使用cuda编译llama.cpp后,仍然无法使用gpu。 ./llama-server -m ../../../../../model/hf_models/qwen/qwen3-4b-q8_0.gguf -ngl 40 报错如下 ggml_cuda_init: failed to initialize CUDA: forward compatibility was attempted on non supported HW warning: n…...
Python Unicode字符串和普通字符串转换
Unicode 是一种字符编码标准,旨在为世界上所有书写系统的每个字符提供一个唯一的数字标识(称为码点)。 码点: 每个 Unicode 字符被分配一个唯一的数字,称为码点表示形式:u 后跟 4-6 位十六进制数…...
Ansible Roles 是一种用于层次化和结构化组织 Ansible Playbook 的机制。
Ansible Roles 是一种用于层次化和结构化组织 Ansible Playbook 的机制。它通过将变量、文件、任务、模板和处理器等放置在单独的目录中,简化了 Playbook 的管理和复用。Roles 自 Ansible 1.2 版本引入,极大地提高了代码的可维护性和可重用性。 目录结构 一个标准的 Ansibl…...

易学探索助手-个人记录(十)
在现代 Web 应用中,用户体验的重要性不断上升。近期我完成了两个功能模块 —— 语音播报功能 与 用户信息修改表单,分别增强了界面交互与用户自管理能力。 一、语音播报功能(SpeechSynthesis) 功能特点 支持播放、暂停、继续、停…...
Linux基础 -- SSH 流式烧录与压缩传输笔记
Linux SSH 流式烧录与压缩传输指南 一、背景介绍 在嵌入式开发和维护中,常常需要通过 SSH 从 PC 向设备端传输大文件(如系统镜像、固件)并将其直接烧录到指定磁盘(如 /dev/mmcblk2)。然而,设备端存储空间…...

学习51单片机01(安装开发环境)
新学期新相貌.......哈哈哈,我终于把贪吃蛇结束了,现在我们来学stc51单片机! 要求:c语言的程度至少要到函数,指针尽量!如果c语言不好的,可以回去看看我的c语言笔记。 1.开发环境的安装&#x…...
事件驱动reactor的原理与实现
fdset 集合:(就是说) fd_set是一个位图(bitmap)结构 每个位代表一个文件描述符 0表示不在集合中,1表示在集合中 fd_set结构(简化): [0][1][2][3][4][5]...[1023] …...
大模型训练简介
在人工智能蓬勃发展的当下,大语言模型(LLM)成为了众多应用的核心驱动力。从智能聊天机器人到复杂的内容生成系统,LLM 的卓越表现令人瞩目。而这背后,大模型的训练过程充满了奥秘。本文将深入探讨 LLM 训练的各个方面&a…...
深度解析 MySQL 与 Spring Boot 长耗时进程:从故障现象到根治方案(含 Tomcat 重启必要性分析)
一、典型故障现象与用户痛点 在高并发业务场景中,企业级 Spring Boot 应用常遇到以下连锁故障: 用户侧:网页访问超时、提交表单无响应,报错 “服务不可用”。运维侧:监控平台报警 “数据库连接池耗尽”,To…...
More Effective C++:改善编程与设计(上)
More Effective C: 目录 More Effective C: 条款1:仔细区别pointers和 references 条款2:最好使用C转型操作符 条款3:绝对不要以多态方式处理数组 条款4:非必要不要提供default constructor 条款5:对定制的“类型转换函数”保持警觉 …...