当前位置: 首页 > article >正文

篇章二 需求分析(一)

目录

1.知名MQ

2.需求分析

2.1 核心概念

2.2 生产者消费者模型的类别

2.3 BrokerServer 内部的关键概念(MQ)

1.虚拟主机(Virtual Host)

2.交换机(Exchange)

3.队列(Queue)

4.绑定(Binding)

5.消息(Message)

2.4 结构图


1.知名MQ

这么有用的组件,很显然市面上出现了不少:

1.RabbitMQ:

2.Kafka

3.RocketMQ

4.ActiveMQ

这些MQ都大同小异

关于MQ的使用,很显然不是我们的重点,具体介绍后续会开栏目进行讲解。我们的目的是如何模拟实现出来一个。

2.需求分析

2.1 核心概念

参考RabbitMQ,首先来让我们了解一些贯穿项目的核心概念

1.生产者(Producer)

2.消费者(Consumer)

3.中间人(Broker)

4.发布(Publish)  生产者向中间人投递消息的过程

5.订阅(Subscribe)哪些消费者要从中间人取数据,这个注册的过程,成为“订阅”

6.消费(Consume)消费者从中间人这里取数据的动作:

举个栗子:

我要定一个期刊

1.生产者:作者

2.中间人:书店老板

3.消费者:我

4.发布: 作者写出新的期刊,交给书店老板

5.订阅:提前和书店老板说好,我要定好几个月的期刊,把钱给了老板

6.消费:我从书店老板那里拿走期刊

2.2 生产者消费者模型的类别

此时我们要用的模型是生产者消费者类型,但是它具体有哪些类别呢?

生产者 vs 消费者

1. 1 vs 1

2. N vs N

2.3 BrokerServer 内部的关键概念(MQ)

1.虚拟主机(Virtual Host)

        类似于 我们熟悉的MySQL 中的 database,算是一个“逻辑”上的数据集合。

        一个BrokerServer 上也可以组织多种不同类别的数据,可以使用 Virtual Host做出逻辑上的区分

        实际开发中,一个BrokerServer可能会同时用来管理多组 业务线上的数据,就可以使用 Virtual Host 做出区分。

业务线的简单理解:

        百度可以搜索图片、网页、新闻等,有很多不同的子版块 ,每个子版块都可以视为一个单独的业务线

2.交换机(Exchange)

        生产者把消息投递给Broker Server 实际上,是先把消息给了 Broker Server上的某个交换机,再由交换机把消息转发给对应的队列

简单理解:类似于公司前台

3.队列(Queue)

        真正用来存储消息的实体。后续消费者也是从对应的队列取数据。一个大的消息队列可以有很多具体的小队列。

4.绑定(Binding)

把交换机和队列之间,建立起关联关系。

可以把交换机 和 队列 视为是类似于 数据库 中的“多对多”这样的关系。

一个交换机可以对应多个队列

一个队列也可以被多个交换机对应

在数据库中,表示多对多的关系,会使用一个中间表/关联表。

所以,在MQ中,也有一个这样的中间表,所谓的绑定就是中间表中的一项。

5.消息(Message)

简单理解:服务器A 给 服务器B 发的请求(通过MQ转发),就是一个消息。

当然,服务器B 给 服务器A 回的响应(通过MQ转发),也是一个消息。

一个消息,可以视为一个字符串(二进制数据)。

消息中具体包含什么由程序员决定。

2.4 结构图

所以我们参考RabbitMQ,结合上面的一些核心概念来画出我们的结构图

如果想看RabbitMQ的结构图

RabbitMQ 是一个高性能、高可靠的消息中间件,支持多种消息协议(如 AMQP、STOMP、MQTT 等),能够实现应用程序之间的异步通信、负载均衡、解耦等功能。它由 Erlang 语言编写,具有良好的高可用性和扩展性。

如果想了解AMQP协议

AMQP(Advanced Message Queuing Protocol)是一种高级消息队列协议,广泛用于构建可靠的消息中间件。

相关文章:

篇章二 需求分析(一)

目录 1.知名MQ 2.需求分析 2.1 核心概念 2.2 生产者消费者模型的类别 2.3 BrokerServer 内部的关键概念(MQ) 1.虚拟主机(Virtual Host) 2.交换机(Exchange) 3.队列(Queue) 4…...

汽车充电过程中--各个电压的关系(DeepSeek)

在电动汽车的充电过程中,电池的充电机制涉及多个电压参数的协调控制,以下从原理到实际应用逐步分析: 1. 充电基础原理 电动汽车电池(通常为锂离子电池组)的充电本质是通过外部电源向电池注入电能,使锂离子…...

图解深度学习 - 机器学习简史

前言 深度学习并非总是解决问题的最佳方案:缺乏足够数据时,深度学习难以施展;某些情况下,其他机器学习算法可能更为高效。 若初学者首次接触的是深度学习,可能会形成一种偏见,视所有机器学习问题为深度学…...

Gmsh 代码深度解析与应用实例

在科学计算与工程仿真领域,Gmsh 是一款广受欢迎的开源有限元网格生成器,它不仅支持复杂的几何建模,还能高效生成高质量的网格,并具备强大的后处理功能。本文将深入解析几段具有代表性的 Gmsh 代码,从基础几何创建到高级…...

49页 @《人工智能生命体 新启点》中國龍 原创连载

《 人工智能生命体 新启点 》一书,以建立意识来建立起生命体,让其成为独立、自主的活动个体;也就可以理解为建立生命体的思想指导。 让我们能够赋予他灵魂!...

量化研究---bigquant策略交易api研究

api接口来平台的代码整理,原理是读取bigquant的模拟测试信号,下单,可以完美的对接qmt交易,我优化了交易api的部分内容 我开发对接qmt的交易系统 看api源代码 源代码 # 导入系统包 import os import json import requests from ty…...

编译原理 期末速成

一、基本概念 1. 翻译程序 vs 编译程序 翻译程序的三种方式 编译:将高级语言编写的源程序翻译成等价的机器语言或汇编语言。(生成文件,等价)解释:将高级语言编写的源程序翻译一句执行一句,不生成目标文件…...

echarts之漏斗图

vue3echarts实现漏斗图 echarts中文官网&#xff1a;https://echarts.apache.org/examples/zh/index.html 效果图如下&#xff1a; 整体代码如下&#xff1a; <template><div id"funnelChart" style"width:100%;height:400px;"></div&g…...

零基础设计模式——第二部分:创建型模式 - 原型模式

第二部分&#xff1a;创建型模式 - 5. 原型模式 (Prototype Pattern) 我们已经探讨了单例、工厂方法、抽象工厂和生成器模式。现在&#xff0c;我们来看创建型模式的最后一个主要成员——原型模式。这种模式关注的是通过复制现有对象来创建新对象&#xff0c;而不是通过传统的…...

Honeywell TK-PRS021 C200

Honeywell C200/C200E 是一款高性能的集成控制与安全系统&#xff08;ICSS&#xff09;&#xff0c;采用紧凑型 A 系列机箱 设计&#xff0c;适用于工业自动化、过程控制和批处理管理。C200 控制器最初随 PlantScape R200 发布&#xff0c;而 C200E 则与 Experion PKS R400 兼容…...

java 进阶 1.0.3

Thread API说明 自己滚去看文档 CPU线程调度 每一个线程的优先使用权都是系统随机分配的&#xff0c;人人平等 谁先分配到就谁先用 也可以耍赖&#xff0c;就是赋予某一个线程拥有之高使用权&#xff1a;优先级 这样的操作就叫做线程调度 最基本的是系统轮流获得 java的做法是抢…...

从 Docker 到 runC

从 Docker 到 runC:容器底层原理详解 目录 1. Docker 与 runC 的关系 2. Docker 的核心组件 3. runC 的核心功能 4. 实战示例:从 Docker 到 runC 4.1 示例场景:运行一个简单容器 4.2 Docker 底层调用 runC 的流程 4.3 查看 runC 的调用 4.4 直接调用 runC 创建容器 …...

PET,Prompt Tuning,P Tuning,Lora,Qlora 大模型微调的简介

概览 到2025年&#xff0c;虽然PET&#xff08;Pattern-Exploiting Training&#xff09;和Prompt Tuning在学术界仍有探讨&#xff0c;但在工业和生产环境中它们已基本被LoRA/QLoRA等参数高效微调&#xff08;PEFT&#xff09;方法取代 。LoRA因其实现简单、推理零开销&#…...

02-jenkins学习之旅-基础配置

0 配置主路径 jenkins安装目录下找到jenkins.xml文件&#xff0c;C:\ProgramData\Jenkins\.jenkins目录下会存放jenkins相关的配置信息。 1 jdk配置 jenkins是java开发开源的项目&#xff0c;进而服务器需要jdk环境 1.1 服务器安装jdk 1.2 jenkins jdk配置 2 git配置 在je…...

互联网大厂Java求职面试:云原生架构与AI应用集成解决方案

互联网大厂Java求职面试&#xff1a;云原生架构与AI应用集成解决方案 场景一&#xff1a;短视频与直播平台的高并发架构设计 面试官提问 面试官&#xff08;技术总监&#xff09;&#xff1a; 郑薪苦&#xff0c;你有处理过千万级用户同时在线的直播系统吗&#xff1f;如何设…...

Python爬虫实战:研究Crawley 框架相关技术

1. Crawley 框架相关定义 1.1 网络爬虫定义 网络爬虫是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。它通过 HTTP 协议与 Web 服务器进行交互,获取网页内容并进行解析处理,是数据采集和信息检索的重要工具。 1.2 Crawley 框架定义 Crawley 是一个基于 Pytho…...

C#实现List导出CSV:深入解析完整方案

C#实现List导出CSV&#xff1a;深入解析完整方案 在数据交互场景中&#xff0c;CSV文件凭借其跨平台兼容性和简洁性&#xff0c;成为数据交换的重要载体。本文将基于C#反射机制实现的通用CSV导出方案&#xff0c;结合实际开发中的痛点&#xff0c;从基础实现、深度优化到生产级…...

Appium+python自动化(三)- SDK Manager

简介 一开始打算用真机做的&#xff0c;所以在前边搭建环境时候就没有下载SDK&#xff0c;但是考虑到绝大多数人都没有真机&#xff0c;所以顺应民意整理一下模拟器。SDK顾名思义&#xff0c;Android SDK Manager就是一个Android软件开发工具包管理器&#xff0c;就像一个桥梁&…...

3D Gaussian Splatting for Real-Time Radiance Field Rendering——文章方法精解

SfM → Point-NeRF → 3D Gaussian Splatting &#x1f7e6;SfM Structure-from-Motion&#xff08;运动恢复结构&#xff0c;简称 SfM&#xff09;是一种计算机视觉技术&#xff0c;可以&#xff1a; 利用多张从不同角度拍摄的图像&#xff0c;恢复出场景的三维结构和相机的…...

主成分分析基本概念及python代码使用

目录 1. 前言 2. 主成分分析的基本概念 3. PCA的适应场景 4. PCA算法的理论基础 4.1 标准化数据 4.2 计算协方差矩阵 4.3 求解特征值和特征向量 4.4 选择主成分 4.5 投影到新坐标系 5. 完整的PCA示例 5.1 使用手写数字数据集 5.2 可视化降维后的数据 6. PCA的优缺…...

MCP如何助力智能交通系统?从数据融合到精准决策

MCP如何助力智能交通系统?从数据融合到精准决策 近年来,智能交通系统(ITS)正在全球范围内快速发展,它结合人工智能(AI)、物联网(IoT)和数据分析,致力于提高交通效率、减少拥堵、增强安全性。而MCP(Multi-Constraint Pathfinding,多约束路径寻优)技术作为一种复杂…...

什么是抽象类?是所有函数都是纯虚函数吗?

什么是抽象类&#xff1f; 抽象类&#xff08;Abstract Class&#xff09;是一种特殊的类&#xff0c;它不能被直接实例化&#xff0c;但可以作为基类被其他类继承。抽象类的主要用途是定义一组接口规范&#xff0c;这些规范由派生类实现。 在C中&#xff0c;抽象类是通过包含…...

计算机视觉与深度学习 | Python实现ARIMA-WOA-CNN-LSTM时间序列预测(完整源码和数据

以下是一个结合ARIMA、鲸鱼优化算法(WOA)、CNN和LSTM进行时间序列预测的Python实现框架。由于完整代码和数据量较大,此处提供核心代码结构和示例数据集,您可根据需求扩展。 1. 数据准备(示例数据) 使用airline-passengers.csv(航空乘客数据集): import pandas as pd…...

【Unity实战笔记】第二十四 · 使用 SMB+Animator 实现基础战斗系统

转载请注明出处&#xff1a;&#x1f517;https://blog.csdn.net/weixin_44013533/article/details/146409453 作者&#xff1a;CSDN|Ringleader| 1 结构 1.1 状态机 1.2 SMB 2 代码实现 2.1 核心控制 Player_Base_SMB 继承 StateMachineBehaviour &#xff0c;控制变量初始…...

C/C++的OpenCV 进行图像梯度提取

使用 C/OpenCV 进行图像梯度提取 图像梯度表示图像中像素强度的变化率和方向。它是图像分析中的一个基本概念&#xff0c;广泛应用于边缘检测、特征提取和物体识别等任务。OpenCV 提供了多种计算图像梯度的函数。本文将介绍几种常用的梯度算子及其在 C/OpenCV 中的实现。 预备…...

Redis 缓存使用的BigKey问题

一、什么是 BigKey&#xff1f; BigKey 指在 Redis 中存储的 单个 Key 对应的 Value 过大&#xff0c;通常表现为&#xff1a; String 类型&#xff1a;Value 长度 > 10KB。Hash/List/Set/ZSet&#xff1a;元素数量 > 5,000 或总大小 > 10MB。 二、BigKey 的危害 问…...

【Java高阶面经:消息队列篇】22、消息队列核心应用:高并发场景下的解耦、异步与削峰

一、消息队列:分布式系统的核心枢纽 在分布式架构日益普及的今天,消息队列(Message Queue, MQ)已成为解决系统复杂性的核心组件。它通过异步通信、系统解耦和流量控制等能力,有效应对高并发场景下的数据流动挑战。 1.1 核心特性:异步、解耦与弹性 1.1.1 异步通信:释放…...

软媒魔方——一款集合多种系统辅助组件的软件

停更4年&#xff0c;但依旧吊炸天&#xff01; 亲们&#xff0c;是不是觉得电脑用久了就像老牛拉车&#xff0c;慢得让人着急&#xff1f;别急&#xff0c;我今天要给大家安利一个超好用的电脑优化神器——软媒魔方&#xff01; 软件介绍 首先&#xff0c;这货真心是免费的&a…...

Unity场景的加载与卸载

Unity场景的加载与卸载 使用方法&#xff1a;把SceneLoader 脚本代码挂在场景中 使用示例&#xff1a; SceneLoader.Instance.LoadAdditiveScene(8);//通过场景索引加载SceneLoader.Instance.UnloadScene("ShiWaiScene");//通过场景名字卸载脚本代码如下&#xff1…...

多路径可靠传输协议(比如 MPTCP)为什么低效

可靠就不能多路径&#xff0c;多路径求可靠必然要多费劲。这不难理解&#xff0c;多路径必异步&#xff0c;这无疑增加了可靠性判断的难度。 前文 多路径传输(比如 MPTCP)对性能的意义 阐述了作为单连接的多子流 MPTCP 对传输性能的意义是无意义&#xff0c;本文接着阐述作为隧…...