打卡Day33
简单的神经网络
数据的准备
# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np# 加载鸢尾花数据集
iris = load_iris()
X = iris.data # 特征数据
y = iris.target # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 打印下尺寸
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放
# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)
模型架构定义
定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。
定义层数+定义前向传播顺序
import torch
import torch.nn as nn
import torch.optim as optim
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(4, 10) # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3) # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型
model = MLP()
# def forward(self,x): #前向传播# x=torch.relu(self.fc1(x)) #激活函数# x=self.fc2(x) #输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy# return x
模型训练(CPU版本)
定义损失函数和优化器
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)
开始循环训练
实际上在训练的时候,可以同时观察每个epoch训练完后测试集的表现:测试集的loss和准确度
# 训练模型
num_epochs = 20000 # 训练的轮数# 用于存储每个 epoch 的损失值
losses = []for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始# 前向传播outputs = model.forward(X_train) # 显式调用forward函数# outputs = model(X_train) # 常见写法隐式调用forward函数,其实是用了model类的__call__方法loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签# 反向传播和优化optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsizeloss.backward() # 反向传播计算梯度optimizer.step() # 更新参数# 记录损失值losses.append(loss.item())# 打印训练信息if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
可视化结果
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()
相关文章:
打卡Day33
简单的神经网络 数据的准备 # 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import numpy as np# 加载鸢尾花数据集 iris load_iris() X iris.data # …...
计算机组成原理-基本运算部件定点数的运算
2.2基本运算部件 整理自up主beokayy_ 1.加法器 一位全加器 全加器是最基本的加法单元: 三个输入端:加数Ai,加数Bi,低位传进来的进位C1-1两个输出端:本位和S,向高位的进位C 全加器的逻辑表达式: SiAi⊕Bi⊕Ci-1CiAiBi(Ai⊕Bi)C…...

python打卡day34@浙大疏锦行
知识点回归: CPU性能的查看:看架构代际、核心数、线程数GPU性能的查看:看显存、看级别、看架构代际GPU训练的方法:数据和模型移动到GPU device上类的call方法:为什么定义前向传播时可以直接写作self.fc1(x) ①CPU性能查…...

SOC-ESP32S3部分:8-GPIO输出LED控制
飞书文档https://x509p6c8to.feishu.cn/wiki/OSQWwh95niobqUkKyDQcVgsbnFg 这节课,我们将会以ESP32S3外设GPIO的使用为例,带大家学习如何从零开始学会ESP32外设的使用。 例如,这节课我们的需求是,需要通过GPIO控制指示灯的亮灭&…...

05算法学习_59. 螺旋矩阵 II
05算法学习_59. 螺旋矩阵 II 05算法学习_59. 螺旋矩阵 II题目描述:个人代码:学习思路:第一种写法:题解关键点: 个人学习时疑惑点解答: 05算法学习_59. 螺旋矩阵 II 力扣题目链接: 59. 螺旋矩阵 II 题目描…...
绘制音频信号的各种频谱图,包括Mel频谱图、STFT频谱图等。它不仅能够绘制频谱图librosa.display.specshow
librosa.display.specshow 是一个非常方便的函数,用于绘制音频信号的各种频谱图,包括Mel频谱图、STFT频谱图等。它不仅能够绘制频谱图,还能自动设置轴标签和刻度,使得生成的图像更加直观和易于理解。 ### 函数签名 python libros…...

Linux `>`/`>>` 重定向操作符深度解析与高阶应用指南
Linux `>`/`>>` 重定向操作符深度解析与高阶应用指南 一、核心功能解析1. 基础重定向2. 标准流描述符二、高阶重定向技巧1. 多流重定向2. 文件描述符操作3. 特殊设备操作三、企业级应用场景1. 日志管理系统2. 数据管道处理3. 自动化运维四、安全与权限管理1. 防误操作…...

【自定义类型-联合和枚举】--联合体类型,联合体大小的计算,枚举类型,枚举类型的使用
目录 一.联合体类型 1.1--联合体类型的声明 1.2--联合体的特点 1.3--相同成员的结构体和联合体对比 1.4--联合体大小的计算 1.5--联合体练习 二.枚举类型 2.1--枚举类型的声明 2.2--枚举类型的优点 2.3--枚举类型的使用 🔥个人主页:草莓熊Lotso…...

李宏毅《深度学习》:Self-attention 自注意力机制
一,问题分析: 什么情况下需要使用self-attention架构,或者说什么问题是CNN等经典网络架构解决不了的问题,我们需要开发新的网络架构? 要解决什么问题《——》对应开发self-attention架构的目的? 1&#…...

C++初阶-list的使用1
目录 1.std::list简介 2.成员函数 2.1构造函数的使用 2.2list::operator的使用 3.迭代器 4.容量 4.1list::empty函数的使用 4.2list::size函数的使用 4.3list::max_size函数的使用 5.元素访问 6.修饰符 6.1list::assign函数的使用 6.2push_back和pop_back和push_fr…...
Linux中的tty与login之间的关系
agetty 进程和 login 进程之间的关系: 一、简要概括 agetty 是登录前的终端初始化程序。 login 是处理用户登录认证的程序。 关系:agetty 启动后等待用户输入用户名,然后调用 login 进程进行用户认证。 二、详细过程 1. agetty 的作用 a…...

Python web 开发 Flask HTTP 服务
Flask 是一个轻量级的 Web 应用框架,它基于 Python 编写,特别适合构建简单的 Web 应用和 RESTful API。Flask 的设计理念是提供尽可能少的约定和配置,从而让开发者能够灵活地构建自己的 Web 应用。 https://andi.cn/page/622189.html...

分享|16个含源码和数据集的计算机视觉实战项目
本文将分享16个含源码和数据集的计算机视觉实战项目。具体包括: 1. 人数统计工具 2. 颜色检测 3. 视频中的对象跟踪 4. 行人检测 5. 手势识别 6. 人类情感识别 7. 车道线检测 8. 名片扫描仪 9. 车牌识别 10. 手写数字识别 11.鸢尾花分类 12. 家庭照片人脸检测 13. 乐…...

二十三、面向对象底层逻辑-BeanDefinitionParser接口设计哲学
一、引言:Spring XML配置的可扩展性基石 在Spring框架的演进历程中,XML配置曾长期作为定义Bean的核心方式。虽然现代Spring应用更倾向于使用注解和Java Config,但在集成第三方组件、兼容遗留系统或实现复杂配置逻辑的场景下,XML配…...

[Vue]路由基础使用和路径传参
实际项目中不可能就一个页面,会有很多个页面。在Vue里面,页面与页面之间的跳转和传参会使用我们的路由: vue-router 基础使用 要使用我们需要先给我们的项目添加依赖:vue-router。使用命令下载: npm install vue-router 使用路由会涉及到下面几个对象:…...

使用VGG-16模型来对海贼王中的角色进行图像分类
动漫角色识别是计算机视觉的典型应用场景,可用于周边商品分类、动画制作辅助等。 这个案例是一个经典的深度学习应用,用于图像分类任务,它使用了一个自定义的VGG-16模型来对《海贼王》中的七个角色进行分类,演示如何将经典CNN模型…...
OSI 网络七层模型中的物理层、数据链路层、网络层
一、OSI 七层模型 物理层、数据链路层、网络层、传输层、会话层、表示层、应用层 1. 物理层(Physical Layer) 功能:传输原始的比特流(0和1),通过物理介质(如电缆、光纤、无线电波)…...

WooCommerce缓存教程 – 如何防止缓存破坏你的WooCommerce网站?
我们在以前的文章中探讨过如何加快你的WordPress网站的速度,并研究过各种形式的缓存。 然而,像那些使用WooCommerce的动态电子商务网站,在让缓存正常工作方面往往会面临重大挑战。 在本指南中,我们将告诉你如何为WooCommerce设置…...
AtCoder Beginner Contest 406(ABCD)
前言 我仿佛在梦游…… 一、A - Not Acceptable #include <bits/stdc.h> using namespace std;typedef long long ll; typedef pair<int,int> pii;void solve() {int dueH,dueM,upH,upM;cin>>dueH>>dueM>>upH>>upM;if(upH>dueH){cou…...

第J2周:ResNet50V2 算法实战与解析
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 学习目标 ✅ 根据TensorFlow代码,编写出相应的Python代码 ✅ 了解ResNetV2和ResNet模型的区别 一、环境配置 二、数据预处理 三、创建、划分数据…...
Live Search API :给大模型装了一个“实时搜索引擎”的插件
6月5号前免费使用。 Live Search 是一项xAI API功能,允许 LLM 在生成响应时查询和考虑实时数据。通过此功能,您可以直接从 API 获得包含实时数据的聊天响应,而无需自己协调网络搜索和大型语言模型(LLM)工具调用。 可以…...
每天分钟级别时间维度在数据仓库的作用与实现——以Doris和Hive为例(开箱即用)
在现代数据仓库建设中,时间维度表是不可或缺的基础维表之一。尤其是在金融、电力、物联网、互联网等行业,分钟级别的时间维度表对于高频数据的统计、分析、报表、数据挖掘等场景具有极其重要的作用。本文将以 Doris 为例,详细讲解每天分钟级别时间维度表在数据仓库中的作用、…...

虚拟机Centos7:Cannot find a valid baseurl for repo: base/7/x86_64问题解决
问题 解决:更新yum仓库源 # 备份现有yum配置文件 sudo cp -r /etc/yum.repos.d /etc/yum.repos.d.backup# 编辑CentOS-Base.repo文件 vi /etc/yum.repos.d/CentOS-Base.repo[base] nameCentOS-$releasever - Base baseurlhttp://mirrors.aliyun.com/centos/$relea…...

IP风险度自检,多维度守护网络安全
如今IP地址不再只是网络连接的标识符,更成为评估安全风险的核心维度。IP风险度通过多维度数据建模,量化IP地址在网络环境中的安全威胁等级,已成为企业反欺诈、内容合规、入侵检测的关键工具。据Gartner报告显示,2025年全球78%的企…...

NV066NV074美光固态颗粒NV084NV085
NV066NV074美光固态颗粒NV084NV085 在存储技术的快速发展浪潮中,美光科技(Micron Technology)始终扮演着引领者的角色。其NV系列闪存颗粒凭借创新设计和卓越性能,成为技术爱好者、硬件开发者乃至企业级用户关注的焦点。本文将围绕…...

C++ 日志系统实战第六步:性能测试
全是通俗易懂的讲解,如果你本节之前的知识都掌握清楚,那就速速来看我的项目笔记吧~ 本文项目结束! 性能测试 下面对日志系统做一个性能测试,测试一下平均每秒能打印多少条日志消息到文件。 主要的测试方法是:每秒能…...
低代码平台搭建
学习低代码平台搭建需要掌握几个核心模块,尤其是动态表单引擎和DSL(领域特定语言)设计,以下是系统化的知识总结: 一、低代码平台的核心模块 低代码平台的核心是让用户通过可视化交互快速生成应用,核心模块包括: 可视化设计器(拖拽布局、组件配置)DSL(领域特定语言)…...
AI编程对传统软件开发的冲击和思考
2025年,如果你所在的软件公司还活着,恭喜,你的老板很坚挺,很有福报。 不过,25年年底的时候,就不好说了! Claude说年底的时候,Claude就可以实现不间断一直编程模式。 一个比996还狠…...

Java桌面应用开发详解:自制截图工具从设计到打包的全流程【附源码与演示】
🔥 本文详细介绍一个Java/JavaFX学习项目——轻量级智能截图工具的开发实践。通过这个项目,你将学习如何使用Java构建桌面应用,掌握JavaFX界面开发、系统托盘集成、全局快捷键注册等实用技能。本文主要关注基础功能实现,适合Java初…...

手写一个简单的线程池
手写一个简单的线程池 项目仓库:https://gitee.com/bossDuy/hand-tearing-thread-pool 基于一个b站up的课程:https://www.bilibili.com/video/BV1cJf2YXEw3/?spm_id_from333.788.videopod.sections&vd_source4cda4baec795c32b16ddd661bb9ce865 理…...