当前位置: 首页 > article >正文

Python训练打卡Day41

简单CNN

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

数据增强

在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。

常见的修改策略包括以下几类

1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转

2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克

3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等

此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

注意数据增强一般是不改变每个批次的数据量,是对原始数据修改后替换原始数据。其中该数据集事先知道其均值和标准差,如果不知道,需要提前计算下。

CNN模型

卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可

1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。

2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。

3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度

4. 步长(stride):卷积核的滑动步长,默认为1。

# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

定义CNN模型中:

1. 使用三层卷积+池化结构提取图像特征

2. 每层卷积后添加BatchNorm加速训练并提高稳定性

3. 使用Dropout减少过拟合

可以把全连接层前面的不理解为神经网络的一部分,单纯理解为特征提取器,他们的存在就是帮助模型进行特征提取的。

batch归一化

Batch 归一化是深度学习中常用的一种归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

       其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差

       旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。

       通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。

1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;

2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。

 深度学习的归一化有2类:

1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。

2. Layer Normalization:一般用于文本数据,本数据的序列长度往往不同,像不同句子长短不一,很难像图像那样固定 Batch Size 。如果用 Batch 归一化,不同批次的统计量波动大,效果不好。层归一化是对单个样本的所有隐藏单元进行归一化,不依赖批次。

特征图 

        卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度

        特征图就代表着在之前特征提取器上提取到的特征,可以通过 Grad-CAM方法来查看模型在识别图像时,特征图所对应的权重是多少。-----深度学习可解释性

调度器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

ReduceLROnPlateau调度器适用于当监测的指标(如验证损失)停滞时降低学习率。是大多数任务的首选调度器,尤其适合验证集波动较大的情况。这种学习率调度器的方法相较于之前只有单纯的优化器,是一种超参数的优化方法,它通过调整学习率来优化模型。

常见的优化器有 adam、SGD、RMSprop 等,而除此之外学习率调度器有 lr_scheduler.StepLR、lr_scheduler.ExponentialLR、lr_scheduler.CosineAnnealingLR 等。

 @浙大疏锦行

相关文章:

Python训练打卡Day41

简单CNN 知识回顾 数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率 卷积操作常见流程如下: 1. 输入 → 卷积层 → Batch…...

spring-boot-admin实现对微服务监控

spring-boot-admin可以对微服务的状态进行监控&#xff0c;步骤如下&#xff1a; 1、添加spring-boot-admin和nacos依赖 <!-- nacos注册中心 --> <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-n…...

Linux 权限管理入门:从基础到实践

文章目录 引言一、Linux 权限管理概述二、文件权限值的表示方法三、文件访问权限的设置&#xff08;chmod&#xff09;四、file指令&#xff1a;快速识别文件类型五、目录的权限六、普通文件的权限七、权限总结八、粘滞位 引言 在 Linux 系统中&#xff0c;权限管理是确保多用…...

Mycat的监控

参考资料&#xff1a; 参考视频 参考博客 Mysql分库分表&#xff08;基于Mycat&#xff09;的基本部署 MySQL垂直分库&#xff08;基于MyCat&#xff09; Mysql水平分表&#xff08;基于Mycat&#xff09;及常用分片规则 视频参考资料及安装包&#xff1a; https://pan.b…...

Glide源码解析

前言 Glide是一款专为Android设计的开源图片加载库。有以下特点&#xff1a;1.支持高效加载网络、本地及资源图片&#xff1b;2.具备良好的缓存策略及生命周期管理策略&#xff1b;3.提供了简易的API和强大的功能。本文将对其源码进行剖析。 基本使用 dependencies {compile …...

7.RV1126-OPENCV cvtColor 和 putText

一.cvtColor 1.作用 cvtColor 是 OPENCV 里面颜色转换的转换函数。能够实现 RGB 图像转换成灰度图、灰度图转换成 RGB 图像、RGB 转换成 HSV 等等 2.API CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn 0 ); 第一个参数&#xff1a;…...

Android 之 kotlin 语言学习笔记二(编码样式)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/style-guide?hlzh-cn#whitespace 1、源文件命名 所有源文件都必须编码为 UTF-8。如果源文件只包含一个顶级类&#xff0c;则文件名应为该类的名称&#xff08;区分大小写&#xff09;加上 .kt 扩展名。…...

Redisson单机模式

redisson调用unlock的过程 Redisson 是一个基于 Redis 的 Java 驻内存数据网格&#xff08;In-Memory Data Grid&#xff09;框架&#xff0c;提供了分布式和可扩展的数据结构和服务。Redisson 的 unlock 方法用于释放锁。下面是 unlock 方法的调用过程&#xff1a; 获取锁的状…...

数据结构第6章 图(竟成)

第 6 章 图 【考纲内容】 1.图的基本概念 2.图的存储及基本操作&#xff1a;(1) 邻接矩阵法&#xff1b;(2) 邻接表法&#xff1b;(3) 邻接多重表、十字链表 3.图的遍历&#xff1a;(1) 深度优先搜索&#xff1b;(2) 广度优先搜索 4.图的基本应用&#xff1a;(1) 最小 (代价) 生…...

机器人现可完全破解验证码:未来安全技术何去何从?

引言 随着计算机视觉技术的飞速发展&#xff0c;机器学习模型现已能够100%可靠地解决Google的视觉reCAPTCHAv2验证码。这标志着一个时代的结束——自2000年代初以来&#xff0c;CAPTCHA&#xff08;"全自动区分计算机与人类的图灵测试"的缩写&#xff09;一直是区分…...

CppCon 2014 学习:(Costless)Software Abstractions for Parallel Architectures

硬件和科学计算的演变关系&#xff1a; 几十年来的硬件进步&#xff1a;计算机硬件不断快速发展&#xff0c;从提升单核速度&#xff0c;到多核并行。科学计算的驱动力&#xff1a;科学计算需求推动硬件创新&#xff0c;比如需要更多计算能力、更高性能。当前的解决方案是并行…...

网络爬虫 - App爬虫及代理的使用(十一)

App爬虫及代理的使用 一、App抓包1. App爬虫原理2. reqable的安装与配置1. reqable安装教程2. reqable的配置3. 模拟器的安装与配置1. 夜神模拟器的安装2. 夜神模拟器的配置4. 内联调试及注意事项1. 软件启动顺序2. 开启抓包功能3. reqable面板功能4. 夜神模拟器设置项5. 注意事…...

Kafka集群部署(docker容器方式)SASL认证(zookeeper)

一、服务器环境 序号 部署版本 版本 1 操作系统 CentOS Linux release 7.9.2009 (Core) 2 docker Docker version 20.10.6 3 docker-compose docker-compose version 1.28.2 二、服务规划 序号 服务 名称 端口 1 zookeeper zookeeper 2181,2888,3888 2 ka…...

【python爬虫】利用代理IP爬取filckr网站数据

亮数据官网链接&#xff1a;亮数据官网...

群晖 NAS 如何帮助培训学校解决文件管理难题

在现代教育环境中&#xff0c;数据管理和协同办公的效率直接影响到教学质量和工作流畅性。某培训学校通过引入群晖 NAS&#xff0c;显著提升了部门的协同办公效率。借助群晖的在线协作、自动备份和快照功能&#xff0c;该校不仅解决了数据散乱和丢失的问题&#xff0c;还大幅节…...

NLP学习路线图(十八):Word2Vec (CBOW Skip-gram)

自然语言处理&#xff08;NLP&#xff09;的核心挑战在于让机器“理解”人类语言。传统方法依赖独热编码&#xff08;One-hot Encoding&#xff09; 表示单词&#xff0c;但它存在严重缺陷&#xff1a;每个单词被视为孤立的符号&#xff0c;无法捕捉词义关联&#xff08;如“国…...

P1438 无聊的数列/P1253 扶苏的问题

因为这两天在写线性代数的作业&#xff0c;没怎么写题…… P1438 无聊的数列 题目背景 无聊的 YYB 总喜欢搞出一些正常人无法搞出的东西。有一天&#xff0c;无聊的 YYB 想出了一道无聊的题&#xff1a;无聊的数列。。。 题目描述 维护一个数列 ai​&#xff0c;支持两种操…...

嵌入式学习笔记 - 新版Keil软件模拟时钟Xtal灰色不可更改的问题

在新版Keil软件中&#xff0c;模拟时钟无法修改XTAL频率&#xff0c;默认只能使用12MHz时钟。‌这是因为Keil MDK从5.36版本开始&#xff0c;参数配置界面不再支持修改系统XTAL频率&#xff0c;XTAL选项变为灰色&#xff0c;无法修改。这会导致在软件仿真时出现时间错误的问题&…...

k8s的出现解决了java并发编程胡问题了

Kubernetes&#xff08;K8s&#xff09;作为一种开源的容器编排平台&#xff0c;极大地简化了应用程序的部署、管理和扩展。这不仅解决了很多基础设施方面的问题&#xff0c;也间接解决了Java并发编程中的一些复杂问题。本文将详细探讨Kubernetes是如何帮助解决Java并发编程中的…...

如何利用大语言模型生成特定格式文风的报告类文章

在这个算法渗透万物的时代,我们不再仅仅满足于大语言模型(LLM)能“写”,更追求它能“写出精髓,写出风格”。尤其在专业且高度格式化的报告类文章领域,仅仅是内容正确已远远不够,文风的精准复刻才是决定报告是否“对味儿”、能否被目标受众有效接受的关键。这不再是简单的…...

黑马Java面试笔记之 集合篇(算法复杂度+ArrayList+)

一. 算法复杂度分析 1.1 时间复杂度 时间复杂度分析&#xff1a;来评估代码的执行耗时的 常见的复杂度表示形式 常见复杂度 1.2 空间复杂度 空间复杂度全称是渐进空间复杂度&#xff0c;表示算法占用的额外存储空间与数据规模之间的增长关系 二. 数组 数组&#xff08;Array&a…...

【从0-1的HTML】第2篇:HTML标签

文章目录 1.标题标签2.段落标签3.文本标签brbstrongsubsup 4.超链接标签5.图片标签6.表格标签7.列表标签有序列表ol无序列表ul定义列表dl 8.表单标签9.音频标签10.视频标签11.HTML元素分类块级元素内联元素 12.HTML布局13.内联框架13.内联框架 1.标题标签 标题标签&#xff1a…...

从“Bucharest”谈起:词语翻译的音译与意译之路

在翻译中&#xff0c;面对地名、人名或新兴术语时&#xff0c;我们常常会遇到一个抉择&#xff1a;到底是“音译”&#xff0c;保留其原发音风貌&#xff0c;还是“意译”&#xff0c;让它意义通达&#xff1f; 今天我们以“Bucharest”为例&#xff0c;展开一次语言与文化的微…...

Nginx+Tomcat负载均衡

目录 Tomcat简介 Tomcat 的核心功能 Tomcat架构 Tomcat 的特点 Tomact配置 关闭防火墙及系统内核 Tomcar 主要文件信息 配置文件说明 案例一&#xff1a;Java的Web站点 案例二&#xff1a;NginxTomcat负载均衡、动静分离 Tomcat简介 Tomcat 是由 Apache 软件基金会&am…...

JVM——JVM中的字节码:解码Java跨平台的核心引擎

引入 在Java的技术版图中&#xff0c;字节码&#xff08;Bytecode&#xff09;是连接源代码与机器世界的黄金桥梁。当开发者写下第一行public class HelloWorld时&#xff0c;编译器便开始了一场精密的翻译工程——将人类可读的Java代码转化为JVM能够理解的字节码指令。这些由…...

【论文解读】ReAct:从思考脱离行动, 到行动反馈思考

认识从实践开始&#xff0c;经过实践得到了理论的认识&#xff0c;还须再回到实践去。 ——《实践论》,毛泽东 1st author: About – Shunyu Yao – 姚顺雨 paper [2210.03629] ReAct: Synergizing Reasoning and Acting in Language ModelsReAct: Synergizing Reasoning and…...

数据解析:一文掌握Python库 lxml 的详细使用(处理XML和HTML的高性能库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、lxml 概述1.1 lxml 介绍1.2 安装和第一个案例1.3 性能优化技巧二、XML处理2.1 解析XML2.2 访问元素2.3 遍历XML树2.4 修改XML2.5 写入XML三、HTML处理3.1 解析HTML3.2 XPath查询3.3 CSS选择器四、高级功能4.1 使用命…...

react native webview加载本地HTML,解决iOS无法加载成功问题

在react native中使用 “react-native-webview”: “^13.13.5”,加载HTML文件 Android: 将HTML文件放置到android/src/main/assets目录&#xff0c;访问 {uri: file:///android_asset/markmap/index.html}ios: 在IOS中可以直接可以直接放在react native项目下&#xff0c;访问…...

简单配置RHEL9.X

切换默认运行级别 将系统默认启动模式从多用户的图形界面调整为多用户的文本界面&#xff0c;适用于优化系统资源占用或进行远程服务器管理的场景。 注意&#xff1a;安装选择“带GUI的服务器”部分常用命令默认安装&#xff1b;如果选择“最小安装”时&#xff0c;部分常用命…...

默认网关 -- 负责转发数据包到其他网络的设备(通常是路由器)

✅ 默认网关概括说明&#xff1a; 默认网关&#xff08;Default Gateway&#xff09;是网络中一台负责转发数据包到其他网络的设备&#xff08;通常是路由器&#xff09;。当一台主机要访问不在本地子网内的设备时&#xff0c;会将数据包发给默认网关&#xff0c;由它继续转发…...