当前位置: 首页 > article >正文

rk3588 上运行smolvlm-realtime-webcam,将视频转为文字描述

smolvlm-realtime-webcam 是一个开源项目,结合了轻量级多模态模型 SmolVLM 和本地推理引擎 llama.cpp,能够在本地实时处理摄像头视频流,生成自然语言描述, 开源项目地址

https://github.com/ngxson/smolvlm-realtime-webcamhttps://github.com/ngxson/smolvlm-realtime-webcam需要依赖https://github.com/ggml-org/llama.cpp/releases/tag/b5581https://github.com/ggml-org/llama.cpp/releases/tag/b5581但是问题来了,如果直接下载现成的llama-b5581-bin-ubuntu-arm64.zip ,

下载命令资源后会提示
Illegal instruction

需要自己编译一下https://github.com/ggml-org/llama.cpp 才可以在rk3588上运行

Build llama.cpp locallyThe main product of this project is the llama library. Its C-style interface can be found in include/llama.h.The project also includes many example programs and tools using the llama library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.To get the Code:git clone https://github.com/ggml-org/llama.cpp
cd llama.cppThe following sections describe how to build with different backends and options.
CPU BuildBuild llama.cpp using CMake:sudo apt install curl
sudo apt install libcurl4-openssl-dev
cmake -B build
cmake --build build --config Release

在rk3588上大约要编译个十来分钟,算是大工程了。最后生成的文件在

/build/bin中

运行试一下,要用代理下载哦

export http_proxy=http://你的代理IP:端口
export https_proxy=http://你的代理IP:端口
./llama-server -hf ggml-org/SmolVLM-500M-Instruct-GGUF

最后出现

 

就表示成功了,这时运行,https://github.com/ngxson/smolvlm-realtime-webcam.git 工程中的index.html就会打开摄像头

 另外这个缺省的模型对中文不太友好,可以换成 中文的,但是速度就不太行了,推荐在有gpu的情况下使用。

# Gemma 3
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
(tool_name) -hf ggml-org/gemma-3-12b-it-GGUF
(tool_name) -hf ggml-org/gemma-3-27b-it-GGUF# SmolVLM
(tool_name) -hf ggml-org/SmolVLM-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM-256M-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM-500M-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF# Pixtral 12B
(tool_name) -hf ggml-org/pixtral-12b-GGUF# Qwen 2 VL
(tool_name) -hf ggml-org/Qwen2-VL-2B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2-VL-7B-Instruct-GGUF# Qwen 2.5 VL
(tool_name) -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-7B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-32B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-72B-Instruct-GGUF# Mistral Small 3.1 24B (IQ2_M quantization)
(tool_name) -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF# InternVL 2.5 and 3
(tool_name) -hf ggml-org/InternVL2_5-1B-GGUF
(tool_name) -hf ggml-org/InternVL2_5-4B-GGUF
(tool_name) -hf ggml-org/InternVL3-1B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-8B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF# Llama 4 Scout
(tool_name) -hf ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF# Moondream2 20250414 version
(tool_name) -hf ggml-org/moondream2-20250414-GGUF

使用下面的模型就可以返回中文了 

 llama-server -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF

smolvlm-realtime-webcam 是一个开源项目,结合了轻量级多模态模型 SmolVLM 和本地推理引擎 llama.cpp,能够在本地实时处理摄像头视频流,生成自然语言描述。 


🧠 项目概述

  • 实时图像理解:通过调用摄像头,项目将捕获的图像发送到本地运行的 llama.cpp 服务器,使用 SmolVLM 模型进行处理,返回对图像的自然语言描述。

  • 轻量级部署:SmolVLM 模型参数量在 256M 到 500M 之间,设计上优化了计算效率,适合在资源受限的设备上运行。

  • 本地运行,无需联网:所有处理均在本地完成,增强了隐私保护,降低了部署门槛 


🚀 实际用途

  1. 辅助视觉障碍者:为视力受限人士提供实时的环境描述,增强其独立性。

  2. 智能家居监控:识别家中异常情况,如宠物行为、火灾迹象等,提升家庭安全。

  3. 教育与学习:在教学中实时描述实验过程或自然现象,增强学习体验。

  4. 工业质量控制:在生产线上实时检测产品缺陷,提高生产效率。

  5. 机器人视觉系统:为机器人提供实时环境理解,提升其自主导航和操作能力。


🌈 创意扩展

  • 实时字幕生成:为视频或直播内容生成实时字幕,提升可访问性。

  • 个性化虚拟助手:结合语音识别和图像理解,创建更智能的个人助手。

  • 增强现实(AR)应用:在 AR 设备中实时识别和标注现实世界中的物体,增强用户体验。

  • 艺术创作工具:将实时图像描述转化为诗歌或故事,激发创作灵感。

  • 环境数据收集:在野外部署设备,实时记录和描述自然环境变化,用于科研。


🔧 快速上手

  1. 安装 llama.cpp:按照官方指南编译并运行 llama.cpp。

  2. 下载 SmolVLM 模型:获取适用于 llama.cpp 的 SmolVLM 模型文件。

  3. 运行服务器:启动 llama.cpp 服务器,并加载 SmolVLM 模型。

  4. 启动前端界面:打开项目中的 index.html 文件,连接摄像头,开始实时描述。


该项目展示了在本地设备上实现实时多模态 AI 应用的可能性,为边缘计算和隐私保护提供了新的解决方案。

相关文章:

rk3588 上运行smolvlm-realtime-webcam,将视频转为文字描述

smolvlm-realtime-webcam 是一个开源项目,结合了轻量级多模态模型 SmolVLM 和本地推理引擎 llama.cpp,能够在本地实时处理摄像头视频流,生成自然语言描述, 开源项目地址 https://github.com/ngxson/smolvlm-realtime-webcamhttps…...

某航参数逆向及设备指纹分析

文章目录 1. 写在前面2. 接口分析3. 加密分析4. 算法还原5. 设备指纹风控分析与绕过【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研究…...

SQL思路解析:窗口滑动的应用

目录 🎯 问题目标 第一步:从数据中我们能直接得到什么? 第二步:我们想要的“7天窗口”长什么样? 第三步:SQL 怎么表达“某一天的前六天”? 🔍JOIN 比窗口函数更灵活 第四步&am…...

Rust 学习笔记:Box<T>

Rust 学习笔记&#xff1a;Box Rust 学习笔记&#xff1a;Box<T\>Box\<T> 简介使用 Box\<T\> 在堆上存储数据启用带有 box 的递归类型关于 cons 列表的介绍计算非递归类型的大小使用 Box\<T\> 获取大小已知的递归类型 Rust 学习笔记&#xff1a;Box<…...

C# 从 ConcurrentDictionary 中取出并移除第一个元素

C# 从 ConcurrentDictionary 中取出并移除第一个元素 要从 ConcurrentDictionary<byte, int> 中取出并移除第一个元素&#xff0c;需要结合 遍历 和 原子移除操作。由于 ConcurrentDictionary 是无序集合&#xff0c;"第一个元素" 通常是指最早添加的元素&…...

操作系统学习(十三)——Linux

一、Linux Linux 是一种类 Unix 的自由开源操作系统内核&#xff0c;由芬兰人 Linus Torvalds 于 1991 年首次发布。如今它广泛应用于服务器、桌面、嵌入式设备、移动设备&#xff08;如 Android&#xff09;等领域。 设计思想&#xff1a; 原则描述模块化与可移植性Linux 内…...

NLP学习路线图(二十二): 循环神经网络(RNN)

在自然语言处理&#xff08;NLP&#xff09;的广阔天地中&#xff0c;序列数据是绝对的核心——无论是流淌的文本、连续的语音还是跳跃的时间序列&#xff0c;都蕴含着前后紧密关联的信息。传统神经网络如同面对一幅打散的拼图&#xff0c;无法理解词语间的顺序关系&#xff0c…...

每日一C(1)C语言的内存分布

目录 代码区 常量区 全局/静态区 初始化数据段&#xff08;.data&#xff09; 未初始化数据段&#xff08;.bss&#xff09; 堆区 栈区 总结 今天我们学习的是C语言的内存分布&#xff0c;以及这些分区所存储的内容和其特点。今天的思维导图如下。 C语言作为一款直接处…...

Photoshop使用钢笔绘制图形

1、绘制脸部路径 选择钢笔工具&#xff0c;再选择“路径”。 基于两个点绘制一个弯曲的曲线 使用Alt键移动单个点&#xff0c;该点决定了后续的曲线方向 继续绘制第3个点 最后一个点首尾是同一个点&#xff0c;使用钢笔保证是闭合回路。 以同样的方式绘制2个眼睛外框。 使用椭…...

应用层协议:HTTP

目录 HTTP&#xff1a;超文本传输协议 1.1 HTTP报文 1.1.1 请求报文 1.1.2 响应报文 1.2 HTTP请求过程和原理 1.2.1 请求过程 1、域名&#xff08;DNS&#xff09;解析 2、建立TCP连接&#xff08;三次握手&#xff09; 3、发送HTTP请求 4、服务器处理请求 5、返回H…...

复习——C++

1、scanf和scanf_s区别 2、取地址&#xff0c;输出 char ba; char* p&b; cout<<*p; cout<<p; p(char*)"abc"; cout<<*p; cout<<p; cout<<(void*)p; 取地址&#xff0c;把b的地址给p 输出*p&#xff0c;是输出p的空间内的值…...

SPI通信协议(软件SPI读取W25Q64)

SPI通信协议 文章目录 SPI通信协议1.SPI通信2.SPI硬件和软件规定2.1SPI硬件电路2.2移位示意图2.3SPI基本时序单元2.3.1起始和终止条件2.3.2交换一个字节&#xff08;模式1&#xff09; 2.4SPI波形分析&#xff08;辅助理解&#xff09;2.4.1发送指令2.4.2指定地址写2.4.3指定地…...

PostgreSQL-基于PgSQL17和11版本导出所有的超表建表语句

最新版本更新 https://code.jiangjiesheng.cn/article/368?fromcsdn 推荐 《高并发 & 微服务 & 性能调优实战案例100讲 源码下载》 1. 基于pgsql 17.4 研究 查询psql版本&#xff1a;SELECT version(); 查看已知1条建表语句和db中数据关系 SELECT create_hypert…...

JavaWeb:前后端分离开发-部门管理

今日内容 前后端分离开发 准备工作 页面布局 整体布局-头部布局 Container 布局容器 左侧布局 资料\04. 基础文件\layout/index.vue <script setup lang"ts"></script><template><div class"common-layout"><el-containe…...

ArcGIS计算多个栅格数据的平均栅格

3种方法计算多个栅格数据的平均栅格 1->使用“ 栅格计算器”工具 原理就是把多幅影像数据相加&#xff0c;然后除以个数&#xff0c;就能得到平均栅格。 2-> 使用“像元统计数据”工具&#xff0c;如果是ArcGIS pro&#xff0c;则是“像元统计”工具。使用这个工具可以…...

字节开源FlowGram:AI时代可视化工作流新利器

字节终于开源“扣子”同款引擎了&#xff01;FlowGram&#xff1a;AI 时代的可视化工作流利器 字节FlowGram创新性地融合图神经网络与多模态交互技术&#xff0c;构建了支持动态拓扑重构的可视化流程引擎。该系统通过引入 f ( G ) ( V ′ &#xff0c; E ′ ) f(\mathcal{G})…...

如何选择合适的分库分表策略

选择合适的分库分表策略需要综合考虑业务特点、数据规模、访问模式、技术成本等多方面因素。以下是系统性的选择思路和关键决策点&#xff1a; 一、核心决策因素 业务需求分析 数据规模&#xff1a;当前数据量&#xff08;如亿级&#xff09;、增长速度&#xff08;如每日新增百…...

(LeetCode 每日一题)3403. 从盒子中找出字典序最大的字符串 I (贪心+枚举)

题目&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 题目&#xff1a;贪心枚举字符串&#xff0c;时间复杂度0(n)。 最优解的长度一定是在[1,n-numFriends]之间。 字符串在前缀都相同的情况下&#xff0c;长度越长越大。 C版本&#xff1a; class Solution { public:st…...

GPIO的内部结构与功能解析

一、GPIO总体结构 总体构成 1.APB2(外设总线) APB2总线是微控制器内部连接CPU与外设&#xff08;如GPIO&#xff09;的总线&#xff0c;负责CPU对GPIO寄存器的读写访问&#xff0c;支持低速外设通信 2.寄存器 控制GPIO的配置&#xff08;输入/输出模式、上拉/下拉等&#x…...

Python训练打卡Day42

Grad-CAM与Hook函数 知识点回顾 回调函数lambda函数hook函数的模块钩子和张量钩子Grad-CAM的示例 在深度学习中&#xff0c;我们经常需要查看或修改模型中间层的输出或梯度。然而&#xff0c;标准的前向传播和反向传播过程通常是一个黑盒&#xff0c;我们很难直接访问中间层的信…...

深度学习中的负采样

深度学习中的负采样 负采样&#xff08;Negative Sampling&#xff09; 是一种在训练大型分类或概率模型&#xff08;尤其是在输出类别很多时&#xff09;中&#xff0c;用来加速训练、降低计算量的方法。 它常用于&#xff1a; 词向量训练&#xff08;如 Word2Vec&#xff…...

php7+mysql5.6单用户中医处方管理系统V1.0

php7mysql5.6中医处方管理系统说明文档 一、系统简介 ----------- 本系统是一款专为中医诊所设计的处方管理系统&#xff0c;基于PHPMySQL开发&#xff0c;不依赖第三方框架&#xff0c;采用原生HTML5CSS3AJAX技术&#xff0c;适配手机和电脑访问。 系统支持药品管理、处方开…...

Java 大视界 — Java 大数据在智能安防视频监控中的异常事件快速响应与处理机制

/*Java 大数据在智能安防视频监控中的异常事件快速响应与处理机制&#xff08;简化示例&#xff09;*/// 1. Event.java - 异常事件模型 package com.security.model;public class Event {private String id;private String type; // 如: "入侵", "火警"pr…...

智慧物流园区整体解决方案

该智慧物流园区整体解决方案借助云计算、物联网、ICT 等技术,从咨询规划阶段介入,整合供应链上下游资源,实现物流自动化、信息化与智能化。方案涵盖智慧仓储管理(如自动化立体仓储系统、温湿度监控)、智慧物流(运输管理系统 TMS、GPS 监控)、智慧车辆管理(定位、调度、…...

审批流程管理系统开发记录:layui前端交互的实践

一、需求拆解与技术选型 本次开发围绕企业审批流程管理场景,需实现以下核心功能: 前端申请表单与流程进度可视化底部滑动审批弹窗交互多版本MySQL数据库支持流程数据的增删改查与状态管理技术栈选择: 前端采用LayUI框架,利用其时间线组件(lay-timeline)实现流程进度展示…...

【会员专享数据】1960—2023年我国省市县三级逐年降水量数据(Shp/Excel格式)

之前我们分享过1960-2023年我国0.1分辨率的逐日、逐月、逐年降水栅格数据&#xff08;可查看之前的文章获悉详情&#xff09;&#xff0c;是研究者Jinlong Hu与Chiyuan Miao分享在Zenodo平台上的数据&#xff0c;很多小伙伴拿到数据后反馈栅格数据不太方便使用&#xff0c;问我…...

2025年精通MVCC

今年找工作&#xff0c;无一例外又问到了MVCC这个知识点。几乎每次换工作都会被问到这个面试有用&#xff0c;工作毫无 * 用的知识。但是环境就是这样&#xff0c;既然如此&#xff0c;我们用一篇文章彻底搞懂MVCC 1.MVCC是什么 MVCC&#xff08;Multi-Version Concurrency C…...

硬路由与软路由

目录 核心区别 ⚙️ 性能与功能定位 如何选择&#xff1f; 核心区别 硬路由&#xff1a; 本质&#xff1a; 专用的硬件设备。构成&#xff1a; 厂家将特定的路由器操作系统&#xff08;通常是高度定制化、封闭或精简的&#xff09;固化在专用的硬件平台上。硬件&#xff1a…...

OpenCV C++ 心形雨动画

❤️ OpenCV C 心形雨动画 ❤️ 本文将引导你使用 C 和 OpenCV 库创建一个可爱的心形雨动画。在这个动画中&#xff0c;心形会从屏幕顶部的随机位置落下&#xff0c;模拟下雨的效果。使用opencv定制自己的专属背景 目录 简介先决条件核心概念实现步骤 创建项目定义心形结构…...

Fullstack 面试复习笔记:Java 基础语法 / 核心特性体系化总结

Fullstack 面试复习笔记&#xff1a;Java 基础语法 / 核心特性体系化总结 上一篇笔记&#xff1a;Fullstack 面试复习笔记&#xff1a;操作系统 / 网络 / HTTP / 设计模式梳理 目前上来说&#xff0c;这个系列的笔记本质上来说&#xff0c;是对不理解的知识点进行的一个梳理&…...