当前位置: 首页 > article >正文

60天python训练计划----day45

DAY 45 Tensorboard使用介绍

知识点回顾:

  1. tensorboard的发展历史和原理
  2. tensorboard的常见操作
  3. tensorboard在cifar上的实战:MLP和CNN模型

        之前的内容中,我们在神经网络训练中,为了帮助自己理解,借用了很多的组件,比如训练进度条、可视化的loss下降曲线、权重分布图,运行结束后还可以查看单张图的推理效果。

        如果现在有一个交互工具可以很简单的通过按钮完成这些辅助功能那就好了。所以我们现在介绍下tensorboard这个可视化工具,他可以很方便的很多可视化的功能,尤其是他可以在运行过程中实时渲染,方便我们根据图来动态调整训练策略,而不是训练完了才知道好不好。

一、tensorboard的基本操作

1.1 发展历史

        TensorBoard 是 TensorFlow 生态中的官方可视化工具(也可无缝集成 PyTorch),用于实时监控训练过程、可视化模型结构、分析数据分布、对比实验结果等。它通过网页端交互界面,将枯燥的训练日志转化为直观的图表和图像,帮助开发者快速定位问题、优化模型。

        简单来说,TensorBoard 是 TensorFlow 自带的一个「可视化工具」,就像给机器学习模型训练过程装了一个「监控屏幕」。你可以用它直观看到训练过程中的数据变化(比如损失值、准确率)、模型结构、数据分布等,不用盯着一堆枯燥的数字看,对新手非常友好。

TensorBoard 的发展历程如下:

         2015 年随着 TensorFlow 框架一起发布,最初是为了满足深度学习研究者可视化复杂模型训练过程的需求。2016-2018 年新增了更多可视化功能,图像 / 音频可视化:可以直接看训练数据里的图片、听音频(比如在图像分类任务中,查看输入的图片是否正确)。直方图:展示数据分布(比如权重参数的分布是否合理)。多运行对比:同时对比多个训练任务的结果(比如不同学习率的效果对比)。

         2019 年后与 PyTorch 兼容,变得更通用了。功能进一步丰富,比如支持3D 可视化、模型参数调试等。目前这个工具还在不断发展,比如一些额外功能在tensorboardX上存在,但是我们目前只需要要用到最经典的几个功能即可:

1. 保存模型结构图

2. 保存训练集和验证集的loss变化曲线,不需要手动打印了

3. 保存每一个层结构权重分布

4. 保存预测图片的预测信息

1.2 tensorboard的原理

        TensorBoard 的核心原理就是在训练过程中,把训练过程中的数据(比如损失、准确率、图片等)先记录到日志文件里,再通过工具把这些日志文件可视化成图表,这样就不用自己手动打印数据或者用其他工具画图。

所以核心就是2个步骤:

- 数据怎么存?—— 先写日志文件

训练模型时,TensorBoard 会让程序把训练数据(比如损失值、准确率)和模型结构等信息,写入一个特殊的日志文件(.tfevents 文件)

- 数据怎么看?—— 用网页展示日志

        写完日志后,TensorBoard 会启动一个本地网页服务,自动读取日志文件里的数据,用图表、图像、文本等形式展示出来。如果只用 print(损失值) 或者自己用 matplotlib 画图,不仅麻烦,还得手动保存数据、写代码,尤其训练几天几夜时,根本没法实时盯着看。而 TensorBoard 能自动把这些数据 “存下来 + 画出来”,还能生成网页版的可视化界面,随时刷新查看!



1.3  日志目录自动管理

log_dir = 'runs/cifar10_mlp_experiment'
if os.path.exists(log_dir):i = 1while os.path.exists(f"{log_dir}_{i}"):i += 1log_dir = f"{log_dir}_{i}"
writer = SummaryWriter(log_dir) #关键入口,用于写入数据到日志目录

        自动避免日志目录重复。若 runs/cifar10_mlp_experiment 已存在,会生成 runs/cifar10_mlp_experiment_1、_2 等新目录,确保每次训练的日志独立存储。方便对比不同训练任务的结果(如不同超参数实验)

1.4 记录标量数据(Scalar)

# 记录每个 Batch 的损失和准确率
writer.add_scalar('Train/Batch_Loss', batch_loss, global_step)
writer.add_scalar('Train/Batch_Accuracy', batch_acc, global_step)# 记录每个 Epoch 的训练指标
writer.add_scalar('Train/Epoch_Loss', epoch_train_loss, epoch)
writer.add_scalar('Train/Epoch_Accuracy', epoch_train_acc, epoch)

在 tensorboard的SCALARS 选项卡中查看曲线,支持多 run 对比。

1.5 可视化模型结构(Graph)

dataiter = iter(train_loader)
images, labels = next(dataiter)
images = images.to(device)
writer.add_graph(model, images)  # 通过真实输入样本生成模型计算图

TensorBoard 界面:在 GRAPHS 选项卡中查看模型层次结构(卷积层、全连接层等)。

1.6 可视化图像(Image)

# 可视化原始训练图像
img_grid = torchvision.utils.make_grid(images[:8].cpu()) # 将多张图像拼接成网格状(方便可视化),将前8张图像拼接成一个网格
writer.add_image('原始训练图像', img_grid)# 可视化错误预测样本(训练结束后)
wrong_img_grid = torchvision.utils.make_grid(wrong_images[:display_count])
writer.add_image('错误预测样本', wrong_img_grid)

展示原始图像、数据增强效果、错误预测样本等。

1.7 记录权重和梯度直方图(Histogram)

if (batch_idx + 1) % 500 == 0:for name, param in model.named_parameters():writer.add_histogram(f'weights/{name}', param, global_step)  # 权重分布if param.grad is not None:writer.add_histogram(f'grads/{name}', param.grad, global_step)  # 梯度分布

        在 HISTOGRAMS 选项卡中查看不同层的参数分布随训练的变化。监控模型参数(如权重 weights)和梯度(grads)的分布变化,诊断训练问题(如梯度消失 / 爆炸)。

1.8 启动tensorboard

运行代码后,会在指定目录(如 runs/cifar10_mlp_experiment_1)生成 .tfevents 文件,存储所有 TensorBoard 数据。在终端执行(需进入项目根目录):tensorboard --logdir=runs  # 假设日志目录在 runs/ 下。打开浏览器,输入终端提示的 URL(通常为 http://localhost:6006)。

二、tensorboard实战

2.1cifar-10 MLP实战

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import matplotlib.pyplot as plt
import os# 设置随机种子以确保结果可复现
torch.manual_seed(42)
np.random.seed(42)# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# CIFAR-10的类别名称
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 创建TensorBoard的SummaryWriter,指定日志保存目录
log_dir = 'runs/cifar10_mlp_experiment'
# 如果目录已存在,添加后缀避免覆盖
if os.path.exists(log_dir):i = 1while os.path.exists(f"{log_dir}_{i}"):i += 1log_dir = f"{log_dir}_{i}"
writer = SummaryWriter(log_dir)# 5. 训练模型(使用TensorBoard记录各种信息)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs, writer):model.train()  # 设置为训练模式# 记录训练开始时间,用于计算训练速度global_step = 0# 可视化模型结构dataiter = iter(train_loader)images, labels = next(dataiter)images = images.to(device)writer.add_graph(model, images)  # 添加模型图# 可视化原始图像样本img_grid = torchvision.utils.make_grid(images[:8].cpu())writer.add_image('原始训练图像', img_grid)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 统计准确率和损失running_loss += loss.item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次记录一次信息到TensorBoardif (batch_idx + 1) % 100 == 0:batch_loss = loss.item()batch_acc = 100. * correct / total# 记录标量数据(损失、准确率)writer.add_scalar('Train/Batch_Loss', batch_loss, global_step)writer.add_scalar('Train/Batch_Accuracy', batch_acc, global_step)# 记录学习率writer.add_scalar('Train/Learning_Rate', optimizer.param_groups[0]['lr'], global_step)# 每500个批次记录一次直方图(权重和梯度)if (batch_idx + 1) % 500 == 0:for name, param in model.named_parameters():writer.add_histogram(f'weights/{name}', param, global_step)if param.grad is not None:writer.add_histogram(f'grads/{name}', param.grad, global_step)print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {batch_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')global_step += 1# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 记录每个epoch的训练损失和准确率writer.add_scalar('Train/Epoch_Loss', epoch_train_loss, epoch)writer.add_scalar('Train/Epoch_Accuracy', epoch_train_acc, epoch)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0# 用于存储预测错误的样本wrong_images = []wrong_labels = []wrong_preds = []with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()# 收集预测错误的样本wrong_mask = (predicted != target).cpu()if wrong_mask.sum() > 0:wrong_batch_images = data[wrong_mask].cpu()wrong_batch_labels = target[wrong_mask].cpu()wrong_batch_preds = predicted[wrong_mask].cpu()wrong_images.extend(wrong_batch_images)wrong_labels.extend(wrong_batch_labels)wrong_preds.extend(wrong_batch_preds)epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录每个epoch的测试损失和准确率writer.add_scalar('Test/Loss', epoch_test_loss, epoch)writer.add_scalar('Test/Accuracy', epoch_test_acc, epoch)# 计算并记录训练速度(每秒处理的样本数)# 这里简化处理,假设每个epoch的时间相同samples_per_epoch = len(train_loader.dataset)# 实际应用中应该使用time.time()来计算真实时间print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 可视化预测错误的样本(只在最后一个epoch进行)if epoch == epochs - 1 and len(wrong_images) > 0:# 最多显示8个错误样本display_count = min(8, len(wrong_images))wrong_img_grid = torchvision.utils.make_grid(wrong_images[:display_count])# 创建错误预测的标签文本wrong_text = []for i in range(display_count):true_label = classes[wrong_labels[i]]pred_label = classes[wrong_preds[i]]wrong_text.append(f'True: {true_label}, Pred: {pred_label}')writer.add_image('错误预测样本', wrong_img_grid)writer.add_text('错误预测标签', '\n'.join(wrong_text), epoch)# 关闭TensorBoard写入器writer.close()return epoch_test_acc  # 返回最终测试准确率# 6. 执行训练和测试
epochs = 20  # 训练轮次
print("开始训练模型...")
print(f"TensorBoard日志保存在: {log_dir}")
print("训练完成后,使用命令 `tensorboard --logdir=runs` 启动TensorBoard查看可视化结果")final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs, writer)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

 

TensorBoard日志保存在: runs/cifar10_mlp_experiment_1

可以在命令行中进入目前的环境,然后通过tensorboard --logdir=xxxx(目录)即可调出本地链接,点进去就是目前的训练信息,可以不断F5刷新来查看变化。

在TensorBoard界面中,你可以看到:

1. SCALARS 选项卡:展示损失曲线、准确率变化、学习率等标量数据----Scalar意思是标量,指只有大小、没有方向的量。

2. IMAGES 选项卡:展示原始训练图像和错误预测的样本

3. GRAPHS 选项卡:展示模型的计算图结构

4. HISTOGRAMS 选项卡:展示模型参数和梯度的分布直方图

2.2 cifar-10 CNN实战

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter  
import matplotlib.pyplot as plt
import numpy as np
import os
import torchvision  # 记得导入 torchvision,之前代码里用到了其功能但没导入# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理 
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5,       # 降低LR的比例(新LR = 旧LR × 0.5)verbose=True      # 打印学习率调整信息
)# ======================== TensorBoard 核心配置 ========================
# 创建 TensorBoard 日志目录(自动避免重复)
log_dir = "runs/cifar10_cnn_exp"
if os.path.exists(log_dir):version = 1while os.path.exists(f"{log_dir}_v{version}"):version += 1log_dir = f"{log_dir}_v{version}"
writer = SummaryWriter(log_dir)  # 初始化 SummaryWriter# 5. 训练模型(整合 TensorBoard 记录)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer):model.train()all_iter_losses = []  iter_indices = []     global_step = 0       # 全局步骤,用于 TensorBoard 标量记录# (可选)记录模型结构:用一个真实样本走一遍前向传播,让 TensorBoard 解析计算图dataiter = iter(train_loader)images, labels = next(dataiter)images = images.to(device)writer.add_graph(model, images)  # 写入模型结构到 TensorBoard# (可选)记录原始训练图像:可视化数据增强前/后效果img_grid = torchvision.utils.make_grid(images[:8].cpu())  # 取前8张writer.add_image('原始训练图像(增强前)', img_grid, global_step=0)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录迭代级损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(global_step + 1)  # 用 global_step 对齐# 统计准确率running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# ======================== TensorBoard 标量记录 ========================# 记录每个 batch 的损失、准确率batch_acc = 100. * correct / totalwriter.add_scalar('Train/Batch Loss', iter_loss, global_step)writer.add_scalar('Train/Batch Accuracy', batch_acc, global_step)# 记录学习率(可选)writer.add_scalar('Train/Learning Rate', optimizer.param_groups[0]['lr'], global_step)# 每 200 个 batch 记录一次参数直方图(可选,耗时稍高)if (batch_idx + 1) % 200 == 0:for name, param in model.named_parameters():writer.add_histogram(f'Weights/{name}', param, global_step)if param.grad is not None:writer.add_histogram(f'Gradients/{name}', param.grad, global_step)# 每 100 个 batch 打印控制台日志(同原代码)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')global_step += 1  # 全局步骤递增# 计算 epoch 级训练指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# ======================== TensorBoard  epoch 标量记录 ========================writer.add_scalar('Train/Epoch Loss', epoch_train_loss, epoch)writer.add_scalar('Train/Epoch Accuracy', epoch_train_acc, epoch)# 测试阶段model.eval()test_loss = 0correct_test = 0total_test = 0wrong_images = []  # 存储错误预测样本(用于可视化)wrong_labels = []wrong_preds = []with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()# 收集错误预测样本(用于可视化)wrong_mask = (predicted != target)if wrong_mask.sum() > 0:wrong_batch_images = data[wrong_mask][:8].cpu()  # 最多存8张wrong_batch_labels = target[wrong_mask][:8].cpu()wrong_batch_preds = predicted[wrong_mask][:8].cpu()wrong_images.extend(wrong_batch_images)wrong_labels.extend(wrong_batch_labels)wrong_preds.extend(wrong_batch_preds)# 计算 epoch 级测试指标epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# ======================== TensorBoard 测试集记录 ========================writer.add_scalar('Test/Epoch Loss', epoch_test_loss, epoch)writer.add_scalar('Test/Epoch Accuracy', epoch_test_acc, epoch)# (可选)可视化错误预测样本if wrong_images:wrong_img_grid = torchvision.utils.make_grid(wrong_images)writer.add_image('错误预测样本', wrong_img_grid, epoch)# 写入错误标签文本(可选)wrong_text = [f"真实: {classes[wl]}, 预测: {classes[wp]}" for wl, wp in zip(wrong_labels, wrong_preds)]writer.add_text('错误预测标签', '\n'.join(wrong_text), epoch)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 关闭 TensorBoard 写入器writer.close()# 绘制迭代级损失曲线(同原代码)plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc# 6. 绘制迭代级损失曲线(同原代码,略)
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# (可选)CIFAR-10 类别名
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 7. 执行训练(传入 TensorBoard writer)
epochs = 20
print("开始使用CNN训练模型...")
print(f"TensorBoard 日志目录: {log_dir}")
print("训练后执行: tensorboard --logdir=runs 查看可视化")final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

 

 

 

@浙大疏锦行

相关文章:

60天python训练计划----day45

DAY 45 Tensorboard使用介绍 知识点回顾: tensorboard的发展历史和原理tensorboard的常见操作tensorboard在cifar上的实战:MLP和CNN模型 之前的内容中,我们在神经网络训练中,为了帮助自己理解,借用了很多的组件&#x…...

Python训练营打卡Day46(2025.6.6)

知识点回顾: 不同CNN层的特征图:不同通道的特征图什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。通道注意力:模型的定义和插入的位置通道注意力后的特征图和热力图 i…...

C# Wkhtmltopdf HTML转PDF碰到的问题

最近碰到一个Html转PDF的需求,看了一下基本上都是需要依赖Wkhtmltopdf,需要在Windows或者linux安装这个可以后使用。找了一下选择了HtmlToPDFCore,这个库是对Wkhtmltopdf.NetCore简单二次封装,这个库的好处就是通过NuGet安装HtmlT…...

Vue3 (数组push数据报错) 解决Cannot read property ‘push‘ of null报错问题

解决Cannot read property ‘push‘ of null报错问题 错误写法 定义变量 <script setup>const workList ref([{name:,value:}])</script>正确定义变量 <script setup>const workList ref([]) </script>解决咯~...

Lifecycle 核心原理面试回答

1. 核心目标与设计思想 解耦生命周期管理&#xff1a; 将 Activity/Fragment 的生命周期回调逻辑从视图控制器中剥离&#xff0c;让业务组件&#xff08;如 Presenter, Repository 封装&#xff09;能独立感知生命周期。 状态驱动&#xff1a; 将离散的生命周期事件 (ON_CREAT…...

PHP:Web 开发的强大基石与未来展望

在当今数字化时代&#xff0c;Web 开发技术日新月异&#xff0c;各种编程语言和框架层出不穷。然而&#xff0c;PHP 作为一种历史悠久且广泛应用的服务器端脚本语言&#xff0c;依然在 Web 开发领域占据着重要地位。 PHP 的历史与现状 PHP&#xff08;Hypertext Preprocessor…...

html文字红色粗体,闪烁渐变动画效果,中英文切换版本

1. 代码 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>红色粗体闪烁文字表格 - 中英文切换</t…...

六、【ESP32开发全栈指南:深入解析ESP32 IDF中的WiFi AP模式开发】

1. 引言&#xff1a;AP模式的核心价值 ESP32的AP&#xff08;Access Point&#xff09;模式使设备成为独立无线热点&#xff0c;适用于&#xff1a; 设备配网&#xff08;SmartConfig&#xff09;无路由器场景的本地组网数据直采终端&#xff08;传感器集中器&#xff09;临时…...

基于Django开发的运动商城系统项目

运动商城系统项目描述 运动商城系统是一个基于现代Web技术构建的电子商务平台&#xff0c;专注于运动类商品的在线销售与管理。该系统采用前后端分离架构&#xff0c;前端使用Vue.js实现动态交互界面&#xff0c;后端基于Django框架提供RESTful API支持&#xff0c;数据库采用…...

Python训练营打卡Day42

知识点回顾 回调函数lambda函数hook函数的模块钩子和张量钩子Grad-CAM的示例 1. 回调函数&#xff08;Callback Function&#xff09; 回调函数是作为参数传递给另一个函数的函数&#xff0c;目的是在某个事件发生后执行。 def fetch_data(callback):# 模拟数据获取data {&quo…...

https相比http的区别

https相比http的区别 https相比http的区别在于:https使用了SSL/TLS加密协议&#xff0c;确保数据传输的安全性和完整性&#xff0c;通信时需要证书验证。 https相比于http的区别主要在于安全性。https使用SSL/TLS加密传输数据&#xff0c;确保数据在客户端和服务器之间的通信…...

【Linux】为 Git 设置 Commit 提交模板方法,可统一个人或者项目的提交风格

为 Git 设置 Commit 提交模板 新建模板文件。注意之后不能删除该文件。 gedit ~/.gitmessage.txt粘贴自己的模板。可以给 AI 提自己的需求&#xff0c;定制一个模板&#xff0c;例如 # <type>(<scope>): <description> # # [optional body] # # [optional…...

caliper config.yaml 文件配置,解释了每个配置项的作用和注意事项

以下是添加了详细备注的 config.yaml 文件配置,解释了每个配置项的作用和注意事项: # Caliper 性能测试主配置文件 # 文档参考: https://hyperledger.github.io/caliper/# 测试轮次配置 - 可以定义多个测试轮次,每个轮次测试不同的合约或场景 rounds:# 第一个测试轮次 - 测试…...

结构体和指针1

#include <iostream> using namespace std; #include <string> struct Student{ int age; string name; double score; }; int main() { //静态分配 Student s1 {18,"小明",88.5}; //cout << s1.name<<"的成绩为…...

Python60日基础学习打卡Day45

之前的神经网络训练中&#xff0c;为了帮助理解借用了很多的组件&#xff0c;比如训练进度条、可视化的loss下降曲线、权重分布图&#xff0c;运行结束后还可以查看单张图的推理效果。 如果现在有一个交互工具可以很简单的通过按钮完成这些辅助功能那就好了&#xff0c;他就是…...

《Java 并发神器:深入理解CompletableFuture.supplyAsync与线程池实战优化》

一、背景介绍 在 Java 后端开发中&#xff0c;我们经常会遇到以下问题&#xff1a; 需要并行执行多个数据库查询或远程调用&#xff1b;单线程执行多个 .list() 方法时耗时过长&#xff1b;希望提升系统响应速度&#xff0c;但又不想引入过多框架。 这时&#xff0c;Java 8 …...

【Visual Studio 2022】卸载安装,ASP.NET

Visual Studio 2022 彻底卸载教程 手动清理残留文件夹 删除C:\Program Files\Microsoft Visual Studio 是旧版本 Visual Studio 的残留安装目录 文件夹名对应的 Visual Studio 版本Microsoft Visual Studio 9.0Visual Studio 2008Microsoft Visual Studio 10.0Visual Studio…...

JVM中的各类引用

JVM中的各类引用 欢迎来到我的博客&#xff1a;TWind的博客 我的CSDN:&#xff1a;Thanwind-CSDN博客 我的掘金&#xff1a;Thanwinde 的个人主页 对象 众所不周知&#xff0c;Java中基本所有的对象都是分配在堆内存之中的&#xff0c;除开基本数据类型在栈帧中以外&#xf…...

thinkphp-queue队列随笔

安装 # 创建项目 composer create-project topthink/think 5.0.*# 安装队列扩展 composer require topthink/think-queue 配置 // application/extra/queue.php<?php return [connector > Redis, // Redis 驱动expire > 0, // 任务的过期时间…...

STM32标准库-TIM输出比较

文章目录 一、输出比较二、PWM2.1简介2.2输出比较通道&#xff08;高级&#xff09;2.3 输出比较通道&#xff08;通用&#xff09;2.4输出比较模式2.5 PWM基本结构1、时基单元2、输出比较单元3、输出控制&#xff08;绿色右侧&#xff09;4、右上波形图&#xff08;以绿色脉冲…...

科技创新驱动人工智能,计算中心建设加速产业腾飞​

在科技飞速发展的当下&#xff0c;人工智能正以前所未有的速度融入我们的生活。一辆辆无人驾驶的车辆在道路上自如地躲避车辆和行人&#xff0c;行驶平稳且操作熟练&#xff1b;刷脸支付让购物变得安全快捷&#xff0c;一秒即可通行。这些曾经只存在于想象中的场景&#xff0c;…...

figma 和蓝湖 有什么区别

以下是 Figma 和蓝湖的详细对比分析&#xff1a; 核心定位区别 维度Figma蓝湖本质全功能云端设计工具设计协作与交付平台核心功能设计原型协作开发交付设计稿交付标注切图协作设计能力✅ 完整矢量设计工具❌ 无设计功能&#xff08;需导入其他工具文件&#xff09;适用阶段全流…...

SQLServer中的存储过程与事务

一、存储过程的概念 1. 定义 存储过程&#xff08;Stored Procedure&#xff09;是一组预编译的 SQL 语句的集合&#xff0c;它们被存储在数据库中&#xff0c;可以通过指定存储过程的名称并执行来调用它们。存储过程可以接受输入参数、输出参数&#xff0c;并且可以返回执行…...

STM32H562----------ADC外设详解

1、ADC 简介 STM32H5xx 系列有 2 个 ADC,都可以独立工作,其中 ADC1 和 ADC2 还可以组成双模式(提高采样率)。每个 ADC 最多可以有 20 个复用通道。这些 ADC 外设与 AHB 总线相连。 STM32H5xx 的 ADC 模块主要有如下几个特性: 1、可配置 12 位、10 位、8 位、6 位分辨率,…...

uniapp 安卓 APP 后台持续运行(保活)的尝试办法

在移动应用开发领域&#xff0c;安卓系统的后台管理机制较为复杂&#xff0c;应用在后台容易被系统回收&#xff0c;导致无法持续运行。对于使用 Uniapp 开发的安卓 APP 来说&#xff0c;实现后台持续运行&#xff08;保活&#xff09;是很多开发者面临的重要需求&#xff0c;比…...

AI大数据模型如何与thingsboard物联网结合

一、 AI大数据与ThingsBoard物联网的结合可以从以下几个方面实现&#xff1a; 1. 数据采集与集成 设备接入&#xff1a;ThingsBoard支持多种通信协议&#xff08;如MQTT、CoAP、HTTP、Modbus、OPC-UA等&#xff09;&#xff0c;可以方便地接入各种物联网设备。通过这些协议&am…...

【SSM】SpringBoot笔记2:整合Junit、MyBatis

前言&#xff1a; 文章是系列学习笔记第9篇。基于黑马程序员课程完成&#xff0c;是笔者的学习笔记与心得总结&#xff0c;供自己和他人参考。笔记大部分是对黑马视频的归纳&#xff0c;少部分自己的理解&#xff0c;微量ai解释的内容&#xff08;ai部分会标出&#xff09;。 …...

STM32——CAN总线

STM32——CAN总线 1. CAN总线基础概念 1.1 CAN总线简介 控制器局域网&#xff08;Controller Area Network, CAN&#xff09;是由Bosch公司开发的串行通信协议&#xff0c;专为汽车电子和工业控制设计&#xff0c;具有以下核心特性&#xff1a; 多主控制架构&#xff1a;所有…...

嵌入式面试高频!!!C语言(四)(嵌入式八股文,嵌入式面经)

更多嵌入式面试文章见下面连接&#xff0c;会不断更新哦&#xff01;&#xff01;关注一下谢谢&#xff01;&#xff01;&#xff01;&#xff01; ​​​​​​​https://blog.csdn.net/qq_61574541/category_12976911.html?fromshareblogcolumn&sharetypeblogcolumn&…...

数据治理在制造业的实践案例

一、数据治理在制造业的重要性 随着工业4.0的到来,制造业正经历着前所未有的变革。数据治理作为制造业数字化转型的关键组成部分,对提升企业竞争力、优化生产流程、提高产品质量和客户满意度等方面起着至关重要的作用。在制造业中,数据治理不仅涉及到数据的收集、存…...