当前位置: 首页 > article >正文

【JJ斗地主-注册安全分析报告】

前言
由于网站注册入口容易被黑客攻击,存在如下安全问题:

  1. 暴力破解密码,造成用户信息泄露
  2. 短信盗刷的安全问题,影响业务及导致用户投诉
  3. 带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞
    在这里插入图片描述

所以大部分网站及App 都采取图形验证码或滑动验证码等交互解决方案, 但在机器学习能力提高的当下,连百度这样的大厂都遭受攻击导致点名批评, 图形验证及交互验证方式的安全性到底如何? 请看具体分析

一、 JJ斗地主PC 注册入口

简介: JJ斗地主 是由 竞技世界(北京)网络技术有限公司 开发的一款热门在线棋牌游戏,主打竞技斗地主玩法,同时包含多种创新模式和赛事体系,深受全国玩家喜爱。

1. 注册引导页

在这里插入图片描述

2. 会员注页面

在这里插入图片描述

二、 安全性分析报告:

JJ斗地主采用的是自己研发的滑动验证码,容易被模拟器绕过甚至逆向后暴力攻击,滑动拼图识别率在 95% 以上。

在这里插入图片描述

三、 测试方法:

  前端界面分析,这是JJ斗地主自己研发的滑动验证码,网上没有现成的教学视频,但形式都差不多,没什么难度 , 这次还是采用模拟器的方式,关键点主要模拟器交互、距离识别和轨道算法3部分 。

在这里插入图片描述

1. 模拟器交互部分


private OpenCv2 openCv2 = new OpenCv2(64, 128);private static String INDEX_URL = "https://www.jj.cn/reg/reg_new.html";@Overridepublic RetEntity send(WebDriver driver, String areaCode, String phone) {RetEntity retEntity = new RetEntity();try {driver.get(INDEX_URL);// 输入手机号WebElement phoneElement = ChromeUtil.waitElement(driver, By.id("phone_number"), 100);phoneElement.sendKeys(phone);// 点击获取验证码boolean isRobot = false;WebElement sendElement = driver.findElement(By.xpath("//button[contains(text(), '获取验证码')]"));if (isRobot) {int top = 76;RobotMove.clickByTop(sendElement, top);} else {ActionMove.humanLikeClick(driver, sendElement);// ((JavascriptExecutor) driver).executeScript("arguments[0].click();", sendElement);}// pic 1 get bigWebElement bigElement = ChromeUtil.waitElement(driver, By.className("jjcaptcha-slider-btm"), 20);if (bigElement == null) {System.out.println("bigElement=" + bigElement);return null;}byte[] bigBytes = GetImage.getCanvasAsImage(driver, "jjcaptcha-slider-btm");int bigLen = (bigBytes != null) ? bigBytes.length : 0;if (bigLen < 100) {System.out.println("bigImgUrl->bigLen=" + bigLen);return null;}// pic 2 get smallbyte[] smallBytes = GetImage.getCanvasAsImage(driver, "jjcaptcha-slider-top");if (smallBytes == null) {System.out.println("smallBytes=" + smallBytes);return null;}String ckSum = GenChecksumUtil.genChecksum(bigBytes);Map<String, Double> openResult = openCv2.getOpenCvDistance(ckSum, bigBytes, smallBytes, "JjCn", 0);if (openResult == null || openResult.size() < 2) {System.out.println("ckSum=" + ckSum + "->openResult=" + openResult);return null;}Double r = 1.1125;Double minX = openResult.get("minX");BigDecimal disD = new BigDecimal((minX + 6) * r).setScale(0, BigDecimal.ROUND_HALF_UP);int distance = disD.intValue();System.out.println("distance=" + distance);WebElement moveElement = driver.findElement(By.className("jjcaptcha-slider-block"));ActionMove.move(driver, moveElement, distance);Thread.sleep(1000);WebElement noticeElement = ChromeUtil.waitElement(driver, By.xpath("//div[@class='box_input']/span[@class='notice_no']"), 5);String notice = (noticeElement != null) ? noticeElement.getText() : null;if (notice != null) {retEntity.setMsg(notice);if (notice.contains("已注册")) {retEntity.setRet(0);retEntity.setExist(1);}return retEntity;}WebElement infoElement = ChromeUtil.waitElement(driver, By.xpath("//button[contains(text(),'获取中')]"), 20);String info = (infoElement != null) ? infoElement.getText() : null;retEntity.setMsg(info);if (info != null && info.contains("获取中")) {retEntity.setRet(0);}return retEntity;} catch (Exception e) {System.out.println("phone=" + phone + ",e=" + e.toString());for (StackTraceElement ele : e.getStackTrace()) {System.out.println(ele.toString());}return null;} finally {if (driver != null)driver.manage().deleteAllCookies();}}

2. 距离识别


/*** * @param ckSum* @param bigBytes* @param smallBytes* @param factory* @return { width, maxX }*/public String[] getOpenCvDistance(String ckSum, byte bigBytes[], byte smallBytes[], String factory, int border) {try {String basePath = ConstTable.codePath + factory + "/";File baseFile = new File(basePath);if (!baseFile.isDirectory()) {baseFile.mkdirs();}// 小图文件File smallFile = new File(basePath + ckSum + "_s.png");FileUtils.writeByteArrayToFile(smallFile, smallBytes);// 大图文件File bigFile = new File(basePath + ckSum + "_b.png");FileUtils.writeByteArrayToFile(bigFile, bigBytes);// 边框清理(去干扰)byte[] clearBoder = (border > 0) ? ImageIOHelper.clearBoder(smallBytes, border) : smallBytes;File tpFile = new File(basePath + ckSum + "_t.png");FileUtils.writeByteArrayToFile(tpFile, clearBoder);String resultFile = basePath + ckSum + "_o.png";return getWidth(tpFile.getAbsolutePath(), bigFile.getAbsolutePath(), resultFile);} catch (Throwable e) {logger.error("getMoveDistance() ckSum=" + ckSum + " " + e.toString());for (StackTraceElement elment : e.getStackTrace()) {logger.error(elment.toString());}return null;}}/*** Open Cv 图片模板匹配* * @param tpPath*            模板图片路径* @param bgPath*            目标图片路径* @return { width, maxX }*/private String[] getWidth(String tpPath, String bgPath, String resultFile) {try {Rect rectCrop = clearWhite(tpPath);Mat g_tem = Imgcodecs.imread(tpPath);Mat clearMat = g_tem.submat(rectCrop);Mat cvt = new Mat();Imgproc.cvtColor(clearMat, cvt, Imgproc.COLOR_RGB2GRAY);Mat edgesSlide = new Mat();Imgproc.Canny(cvt, edgesSlide, threshold1, threshold2);Mat cvtSlide = new Mat();Imgproc.cvtColor(edgesSlide, cvtSlide, Imgproc.COLOR_GRAY2RGB);Imgcodecs.imwrite(tpPath, cvtSlide);Mat g_b = Imgcodecs.imread(bgPath);Mat edgesBg = new Mat();Imgproc.Canny(g_b, edgesBg, threshold1, threshold2);Mat cvtBg = new Mat();Imgproc.cvtColor(edgesBg, cvtBg, Imgproc.COLOR_GRAY2RGB);int result_rows = cvtBg.rows() - cvtSlide.rows() + 1;int result_cols = cvtBg.cols() - cvtSlide.cols() + 1;Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);Imgproc.matchTemplate(cvtBg, cvtSlide, g_result, Imgproc.TM_CCOEFF_NORMED); // 归一化平方差匹配法// 归一化相关匹配法MinMaxLocResult minMaxLoc = Core.minMaxLoc(g_result);Point maxLoc = minMaxLoc.maxLoc;Imgproc.rectangle(cvtBg, maxLoc, new Point(maxLoc.x + cvtSlide.cols(), maxLoc.y + cvtSlide.rows()), new Scalar(0, 0, 255), 1);Imgcodecs.imwrite(resultFile, cvtBg);String width = String.valueOf(cvtSlide.cols());String maxX = String.valueOf(maxLoc.x + cvtSlide.cols());System.out.println("OpenCv2.getWidth() width=" + width + ",maxX=" + maxX);return new String[] { width, maxX };} catch (Throwable e) {System.out.println("getWidth() " + e.toString());logger.error("getWidth() " + e.toString());for (StackTraceElement elment : e.getStackTrace()) {logger.error(elment.toString());}return null;}}public Rect clearWhite(String smallPath) {try {Mat matrix = Imgcodecs.imread(smallPath);int rows = matrix.rows();// height -> yint cols = matrix.cols();// width -> xSystem.out.println("OpenCv2.clearWhite()  rows=" + rows + ",cols=" + cols);Double rgb;double[] arr;int minX = 255;int minY = 255;int maxX = 0;int maxY = 0;Color c;for (int x = 0; x < cols; x++) {for (int y = 0; y < rows; y++) {arr = matrix.get(y, x);rgb = 0.00;for (int i = 0; i < 3; i++) {rgb += arr[i];}c = new Color(rgb.intValue());int b = c.getBlue();int r = c.getRed();int g = c.getGreen();int sum = r + g + b;if (sum >= 5) {if (x <= minX)minX = x;else if (x >= maxX)maxX = x;if (y <= minY)minY = y;else if (y >= maxY)maxY = y;}}}int boder = 1;if (boder > 0) {minX = (minX > boder) ? minX - boder : 0;maxX = (maxX + boder < cols) ? maxX + boder : cols;minY = (minY > boder) ? minY - boder : 0;maxY = (maxY + boder < rows) ? maxY + boder : rows;}int width = (maxX - minX);int height = (maxY - minY);System.out.println("openCv2 minX=" + minX + ",minY=" + minY + ",maxX=" + maxX + ",maxY=" + maxY + "->width=" + width + ",height=" + height);Rect rectCrop = new Rect(minX, minY, width, height);return rectCrop;} catch (Throwable e) {StringBuffer er = new StringBuffer("clearWrite() " + e.toString() + "\n");for (StackTraceElement elment : e.getStackTrace()) {er.append(elment.toString() + "\n");}logger.error(er.toString());System.out.println(er.toString());return null;}}

3. 轨道生成及移动算法

/*** 双轴轨道生成算法,主要实现平滑加速和减速* * @param distance* @return*/public static List<Integer[]> getXyTrack(int distance) {List<Integer[]> track = new ArrayList<Integer[]>();// 移动轨迹try {int a = (int) (distance / 3.0) + random.nextInt(10);int h = 0, current = 0;// 已经移动的距离BigDecimal midRate = new BigDecimal(0.7 + (random.nextInt(10) / 100.00)).setScale(4, BigDecimal.ROUND_HALF_UP);BigDecimal mid = new BigDecimal(distance).multiply(midRate).setScale(0, BigDecimal.ROUND_HALF_UP);// 减速阈值BigDecimal move = null;// 每次循环移动的距离List<Integer[]> subList = new ArrayList<Integer[]>();// 移动轨迹boolean plus = true;Double t = 0.18, v = 0.00, v0;while (current <= distance) {h = random.nextInt(2);if (current > distance / 2) {h = h * -1;}v0 = v;v = v0 + a * t;move = new BigDecimal(v0 * t + 1 / 2 * a * t * t).setScale(4, BigDecimal.ROUND_HALF_UP);// 加速if (move.intValue() < 1)move = new BigDecimal(1L);if (plus) {track.add(new Integer[] { move.intValue(), h });} else {subList.add(0, new Integer[] { move.intValue(), h });}current += move.intValue();if (plus && current >= mid.intValue()) {plus = false;move = new BigDecimal(0L);v = 0.00;}}track.addAll(subList);int bk = current - distance;if (bk > 0) {for (int i = 0; i < bk; i++) {track.add(new Integer[] { -1, h });}}System.out.println("getMoveTrack(" + midRate + ") a=" + a + ",distance=" + distance + " -> mid=" + mid.intValue() + " size=" + track.size());return track;} catch (Exception e) {System.out.print(e.toString());return null;}}/*** 模拟人工移动* * @param driver* @param element页面滑块* @param distance需要移动距离* @throws InterruptedException*/public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {List<Integer[]> track = getXyTrack(distance);if (track == null || track.size() < 1) {System.out.println("move() track=" + track);}int moveY, moveX;StringBuffer sb = new StringBuffer();try {Actions actions = new Actions(driver);actions.clickAndHold(element).perform();Thread.sleep(50);long begin, cost;Integer[] move;int sum = 0;for (int i = 0; i < track.size(); i++) {begin = System.currentTimeMillis();move = track.get(i);moveX = move[0];sum += moveX;moveY = move[1];if (moveX < 0) {if (sb.length() > 0) {sb.append(",");}sb.append(moveX);}actions.moveByOffset(moveX, moveY).perform();cost = System.currentTimeMillis() - begin;if (cost < 5) {Thread.sleep(5 - cost);}}if (sb.length() > 0) {System.out.println("-----backspace[" + sb.toString() + "]sum=" + sum + ",distance=" + distance);}Thread.sleep(180);actions.release(element).perform();Thread.sleep(500);} catch (Exception e) {StringBuffer er = new StringBuffer("move() " + e.toString() + "\n");for (StackTraceElement elment : e.getStackTrace())er.append(elment.toString() + "\n");logger.error(er.toString());System.out.println(er.toString());}}

4. 图片比对结果测试样例:

在这里插入图片描述

四丶结语

J斗地主 是由 竞技世界(北京)网络技术有限公司 开发的一款热门在线棋牌游戏,主打竞技斗地主玩法,同时包含多种创新模式和赛事体系,深受全国玩家喜爱,作为受众巨大的网络游戏厂商,技术实力雄厚, 人才济济,采用的是自己研发的滑动验证产品, 在一定程度上提高了用户体验, 不过随着图形识别技术及机器学习能力的提升,所以在网上破解的文章和教学视频也是大量存在,并且经过验证的确有效, 所以除了滑动验证方式, 花样百出的产品层出不穷,但本质就是牺牲用户体验来提高安全。

很多人在短信服务刚开始建设的阶段,可能不会在安全方面考虑太多,理由有很多。
比如:“ 需求这么赶,当然是先实现功能啊 ”,“ 业务量很小啦,系统就这么点人用,不怕的 ” , “ 我们怎么会被盯上呢,不可能的 ”等等。

有一些理由虽然有道理,但是该来的总是会来的。前期欠下来的债,总是要还的。越早还,问题就越小,损失就越低。

所以大家在安全方面还是要重视。(血淋淋的栗子!)#安全短信#

戳这里→康康你手机号在过多少网站注册过!!!

谷歌图形验证码在AI 面前已经形同虚设,所以谷歌宣布退出验证码服务, 那么当所有的图形验证码都被破解时,大家又该如何做好防御呢?

>>相关阅读
《腾讯防水墙滑动拼图验证码》
《百度旋转图片验证码》
《网易易盾滑动拼图验证码》
《顶象区域面积点选验证码》
《顶象滑动拼图验证码》
《极验滑动拼图验证码》
《使用深度学习来破解 captcha 验证码》
《验证码终结者-基于CNN+BLSTM+CTC的训练部署套件》

相关文章:

【JJ斗地主-注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞 …...

《绩效管理》要点总结与分享

目录 绩效管理与目标设定 绩效管理的循环&#xff1a;PDCA 绩效目标的设定要点 绩效设定的工具&#xff1a;SMART法则 绩效跟踪与评估 刻板印象&#xff1a;STAR法 晕轮效应&#xff1a;对比评价法 近因效应&#xff1a;关键事项评估表 绩效面谈 面谈前准备工作 汉堡…...

Microsoft前后端不分离编程新风向:cshtml

文章目录 什么是CSHTML&#xff1f;基础语法内联表达式代码块控制结构 布局页面_ViewStart.cshtml_Layout.cshtml使用布局 模型绑定强类型视图模型集合 HTML辅助方法基本表单验证 局部视图创建局部视图使用局部视图 高级特性视图组件依赖注入Tag Helpers 性能优化缓存捆绑和压缩…...

【评测】用Flux的图片文本修改的PS效果

【评测】Flux的图片文本修改的PS效果 1. 百度图库找一张有英文的图片 2. 打开https://playground.bfl.ai/image/edit上传图片 3. 输入提示词 “change brarfant to goodbeer” 图片的文字被修改了...

青少年编程与数学 01-011 系统软件简介 01 MS-DOS操作系统

青少年编程与数学 01-011 系统软件简介 01 MS-DOS操作系统 1. MS-DOS的历史背景1.1 诞生背景1.2 发展历程1.3 与Windows的关系 2. MS-DOS的技术细节2.1 系统架构2.2 启动过程2.3 内存管理2.4 设备驱动程序 3. MS-DOS的用户界面3.1 命令行界面3.2 配置文件 4. MS-DOS的应用程序与…...

数据库管理-第334期 Oracle Database 23ai测试版RAC部署文档(20250607)

数据库管理334期 2024-06-07 数据库管理-第334期 Oracle Database 23ai测试版RAC部署文档&#xff08;20240607&#xff09;1 环境与安装介质2 操作标准系统配置2.1 关闭防火墙2.2 关闭SELinux2.3 关闭avahi-daemon2.4 时间同步配置 3 存储服务器配置3.1 配置本地yum源3.2 安装…...

springCloud2025+springBoot3.5.0+Nacos集成redis从nacos拉配置起服务

文章目录 前言一、网关gateway选型1. 响应式编程模型2. 网关的特定需求3. 技术栈一致性4. 性能对比5. 实际应用场景优势 二、redis的集成1.引入库2.配置类A、自定义配置类RedisAfterNacosAutoConfigurationB、自定义配置类RedisConfig 总结 前言 最近在搭建最新的springCloud …...

AI生成的基于html+marked.js实现的Markdown转html工具,离线使用,可实时预览 [

有一个markdown格式的文档&#xff0c;手头只有notepad的MarkdownPanel插件可以预览&#xff0c;但是只能预览&#xff0c;不能直接转换为html文件下载&#xff0c;直接复制预览的内效果又不太好&#xff0c;度娘也能找到很多工具&#xff0c;但是都需要在线使用。所以考虑用AI…...

机器学习:load_predict_project

本文目录&#xff1a; 一、project目录二、utils里的两个工具包&#xff08;一&#xff09;common.py&#xff08;二&#xff09;log.py 三、src文件夹代码&#xff08;一&#xff09;模型训练&#xff08;train.py&#xff09;&#xff08;二&#xff09;模型预测&#xff08;…...

OkHttp 3.0源码解析:从设计理念到核心实现

本文通过深入分析OkHttp 3.0源码&#xff0c;揭示其高效HTTP客户端的实现奥秘&#xff0c;包含核心设计理念、关键组件解析、完整工作流程及实用技巧。 一、引言&#xff1a;为什么选择OkHttp&#xff1f; 在Android和Java生态中&#xff0c;OkHttp已成为HTTP客户端的标准选择…...

【storage】

文章目录 1、RAM and ROM2、DRAM and SRAM2、Flash Memory&#xff08;闪存&#xff09;4、DDR and SPI NOR Flash5、eMMC6、SPI NOR vs SPI NAND vs eMMC vs SD附录——prototype and demo board附录——U盘、SD卡、TF卡、SSD参考 1、RAM and ROM RAM&#xff08;Random Acce…...

微信小程序带参分享、链接功能

分享链接的功能是右上角点...然后复制链接&#xff0c;可以直接点击 #小程序://**商城/p5XqHti******* 这种链接直接从其他地方跳转到小程序 wx.onCopyUrl(() > {return {query: "shareCode" this.shareCode,}; }); query就是参数&#xff0c;直接在onload里…...

JVM 垃圾回收器 详解

垃圾收集器 SerialSerial Old&#xff1a;单线程回收&#xff0c;适用于单核CPU场景ParNewCMS&#xff1a;暂停时间较短&#xff0c;适用于大型互联网应用中与用户交互的部分Paraller ScavengeParallel Old&#xff1a;吞吐量高&#xff0c;适用于后台进行大量数据操作G1&#…...

FreeRTOS任务之深入篇

目录 1.Tick1.1 Tick的概念1.2 Tick与任务调度1.3 Tick与延时函数 2.任务状态2.1 运行状态 (Running)2.2 就绪状态 (Ready)2.3 阻塞状态 (Blocked)5.4 暂停状态 (Suspended)2.5 特殊状态&#xff1a;删除状态 (Deleted)5.6 任务状态转换2.7 实验 3.Delay函数3.1 两个函数3.2 实…...

Linux 系统、代码与服务器进阶知识深度解析

在数字化时代&#xff0c;Linux 系统凭借其开源、稳定、安全的特性&#xff0c;成为服务器领域和软件开发的核心支柱。除了算法优化技巧&#xff0c;Linux 系统在网络服务、容器化技术、服务器安全等方面也蕴含着丰富的知识和实用技术。接下来&#xff0c;我们将深入探讨这些领…...

人工智能--AI换脸

本文实现了一个简易的人脸交换程序&#xff0c;主要功能包括&#xff1a;1)检查所需的模型文件是否存在&#xff1b;2)使用预训练的Caffe模型检测图像中的人脸&#xff1b;3)将源图像的人脸区域通过泊松融合无缝地替换到目标图像上。程序通过OpenCV的DNN模块加载人脸检测模型&a…...

NLP学习路线图(二十七):Transformer编码器/解码器

一、Transformer概览&#xff1a;抛弃循环&#xff0c;拥抱注意力 传统RNN及其变体&#xff08;如LSTM、GRU&#xff09;处理序列数据时存在顺序依赖的瓶颈&#xff1a;必须逐个处理序列元素&#xff0c;难以并行计算&#xff0c;且对长程依赖建模能力较弱。Transformer的革命…...

【机器学习】支持向量机实验报告——基于SVM进行分类预测

目录 一、实验题目描述 二、实验步骤 三、Python代码实现基于SVM进行分类预测 四、我的收获 五、我的感受 一、实验题目描述 实验题目&#xff1a;基于SVM进行分类预测 实验要求&#xff1a;通过给定数据&#xff0c;使用支持向量机算法&#xff08;SVM&#xff09;实现分…...

策略模式实战:Spring中动态选择商品处理策略的实现

概念 可以在运行时期动态的选择需要的具体策略类&#xff0c;处理具体的问题 组成元素 策略接口 public interface GoodsStrategy {void handleGoods(); } 具体策略类 Service(Constants.BEAN_GOODS) public class BeanGoodsStrategy implements GoodsStrategy {Override…...

主流信创数据库对向量功能的支持对比

主流信创数据库对向量功能的支持对比 版本支持对比向量索引支持对比距离函数支持对比使用限制对比OceanBase向量数据库GaussDB向量数据库TiDB向量数据库VastBase向量数据库 ⭐️ 本文章引用数据截止于2025年5月31日。 版本支持对比 数据库产品支持向量功能的版本OceanBaseOce…...

Matlab | matlab中的画图工具详解

二维图形到高级三维可视化 **一、基础二维绘图****二、三维可视化****三、图形修饰工具****四、高级功能****五、交互式工具****六、面向对象绘图(推荐)****七、常用技巧****学习资源**在MATLAB中,画图工具(绘图功能)是其核心优势之一,涵盖从基础二维图形到高级三维可视化…...

HA: Wordy靶场

HA: Wordy 来自 <HA: Wordy ~ VulnHub> 1&#xff0c;将两台虚拟机网络连接都改为NAT模式 2&#xff0c;攻击机上做namp局域网扫描发现靶机 nmap -sn 192.168.23.0/24 那么攻击机IP为192.168.23.128&#xff0c;靶场IP192.168.23.130 3&#xff0c;对靶机进行端口服务探…...

6.7本日总结

一、英语 复习默写list10list19&#xff0c;07年第3篇阅读 二、数学 学习线代第一讲&#xff0c;写15讲课后题 三、408 学习计组第二章&#xff0c;写计组习题 四、总结 本周结束线代第一讲和计组第二章&#xff0c;之后学习计网4.4&#xff0c;学完计网4.4之后开操作系…...

中国移动6周年!

基站超过250万个 网络规模全球最大、质量最优 覆盖全国96%人口 在全国率先实现乡乡双千兆 服务用户超5.7亿 网络上下行均值接入速率均居行业首位 行业应用快速推广&#xff0c;数量超5万个 3CC、RedCap、通感一体、 无线AI改造等技术成熟商用 客户品牌持续升级&#x…...

Svelte 核心语法详解:Vue/React 开发者如何快速上手?

在很多地方早就听到过svelte的大名了&#xff0c;不少工具都有针对svelte的配置插件&#xff0c;比如vite \ unocss \ svelte. 虽然还没使用过&#xff0c;但是发现它的star82.9k数很高哦&#xff0c;学习一下它与众不同的魔法。 这名字有点别扭&#xff0c;好几次都写错。 sve…...

Fullstack 面试复习笔记:HTML / CSS 基础梳理

Fullstack 面试复习笔记&#xff1a;HTML / CSS 基础梳理 之前的笔记&#xff1a; Fullstack 面试复习笔记&#xff1a;操作系统 / 网络 / HTTP / 设计模式梳理Fullstack 面试复习笔记&#xff1a;Java 基础语法 / 核心特性体系化总结Fullstack 面试复习笔记&#xff1a;项目…...

408第一季 - 数据结构 - 树与二叉树II

二叉树的先中后序遍历 理解 那主播&#xff0c;请问你有没有更快的遍历方式呢 有的&#xff0c;兄弟有的 以中序遍历为例啊 找左边有没有东西&#xff0c;左边没东西那它就自由了&#xff0c;就按上面的图举例子 A左边有东西&#xff0c;是B&#xff0c;B左边没东西&#xf…...

打卡第47天

作业&#xff1a;对比不同卷积层热图可视化的结果 核心差异总结 浅层卷积层&#xff08;如第 1-3 层&#xff09; 关注细节&#xff1a;聚焦输入图像的边缘、纹理、颜色块等基础特征&#xff08;例&#xff1a;猫脸的胡须边缘、树叶的脉络&#xff09;。热图特点&#xff1a;区…...

从上下文学习和微调看语言模型的泛化:一项对照研究

大型语言模型表现出令人兴奋的能力&#xff0c;但也可以从微调中表现出令人惊讶的狭窄泛化。例如&#xff0c;他们可能无法概括为简单的关系反转&#xff0c;或者无法根据训练信息进行简单的逻辑推理。这些未能从微调中概括出来的失败可能会阻碍这些模型的实际应用。另一方面&a…...

智慧城市建设方案

第1章 总体说明 1.1 建设背景 1.2 建设目标 1.3 项目建设主要内容 1.4 设计原则 第2章 对项目的理解 2.1 现状分析 2.2 业务需求分析 2.3 功能需求分析 第3章 大数据平台建设方案 3.1 大数据平台总体设计 3.2 大数据平台功能设计 3.3 平台应用 第4章 政策标准保障…...