LeetCode第244题_最短单词距离II
LeetCode第244题:最短单词距离II
问题描述
设计一个类,接收一个单词数组 wordsDict
,并实现一个方法,该方法能够计算两个不同单词在该数组中出现位置的最短距离。
你需要实现一个 WordDistance
类:
WordDistance(String[] wordsDict)
初始化对象,用单词数组wordsDict
初始化对象。int shortest(String word1, String word2)
返回数组wordsDict
中两个单词word1
和word2
的最短距离。
注意:你可以假设 word1
和 word2
都在 wordsDict
中,且它们是不同的单词。
难度:中等
示例
输入:
["WordDistance", "shortest", "shortest"]
[[["practice", "makes", "perfect", "coding", "makes"]], ["coding", "practice"], ["makes", "coding"]]
输出: [null, 3, 1]解释:
WordDistance wordDistance = new WordDistance(["practice", "makes", "perfect", "coding", "makes"]);
wordDistance.shortest("coding", "practice"); // 返回 3
wordDistance.shortest("makes", "coding"); // 返回 1
约束条件
1 <= wordsDict.length <= 3 * 10^4
1 <= wordsDict[i].length <= 10
wordsDict[i]
由小写英文字母组成word1
和word2
在wordsDict
中,且它们是不同的单词shortest
操作次数不超过5000
解题思路
这个问题是 LeetCode 243 “最短单词距离” 的进阶版本。主要区别在于,本题需要设计一个类,可以重复查询不同单词对之间的最短距离。关键在于如何有效地预处理数据,以便快速响应查询请求。
我们可以采用以下两种主要方法:
方法一:预处理位置索引
这种方法在初始化时,将每个单词在数组中的所有位置存储在一个哈希表中:
- 构造函数中,遍历单词数组
wordsDict
,记录每个单词出现的所有位置 - 对于
shortest
方法,获取两个单词的位置列表,然后计算它们之间的最短距离 - 为了计算最短距离,我们比较两个位置列表中的每对位置,找到最小的绝对差值
方法二:双指针优化
方法一在计算最短距离时可能会做很多不必要的比较。考虑到位置列表是有序的(因为我们按顺序遍历数组),我们可以使用双指针方法优化距离计算:
- 初始化两个指针,分别指向两个位置列表的开始
- 比较当前两个指针指向的位置,计算它们的距离
- 移动指向较小位置的指针
- 重复步骤 2 和 3,直到其中一个指针到达列表末尾
- 返回在此过程中找到的最小距离
这种方法避免了不必要的比较,复杂度从 O(m*n) 降低到 O(m+n),其中 m 和 n 是两个单词在数组中出现的次数。
代码实现
方法一:预处理位置索引
C#实现
public class WordDistance {private Dictionary<string, List<int>> wordToIndices;public WordDistance(string[] wordsDict) {wordToIndices = new Dictionary<string, List<int>>();// 预处理每个单词的位置for (int i = 0; i < wordsDict.Length; i++) {if (!wordToIndices.ContainsKey(wordsDict[i])) {wordToIndices[wordsDict[i]] = new List<int>();}wordToIndices[wordsDict[i]].Add(i);}}public int Shortest(string word1, string word2) {List<int> indices1 = wordToIndices[word1];List<int> indices2 = wordToIndices[word2];int minDistance = int.MaxValue;// 计算两个位置列表中的最短距离foreach (int idx1 in indices1) {foreach (int idx2 in indices2) {minDistance = Math.Min(minDistance, Math.Abs(idx1 - idx2));}}return minDistance;}
}
Python实现
class WordDistance:def __init__(self, wordsDict: List[str]):self.locations = {}# 预处理每个单词的位置for i, word in enumerate(wordsDict):if word not in self.locations:self.locations[word] = []self.locations[word].append(i)def shortest(self, word1: str, word2: str) -> int:locations1 = self.locations[word1]locations2 = self.locations[word2]min_dist = float('inf')# 计算两个位置列表中的最短距离for loc1 in locations1:for loc2 in locations2:min_dist = min(min_dist, abs(loc1 - loc2))return min_dist
C++实现
class WordDistance {
private:unordered_map<string, vector<int>> wordToIndices;public:WordDistance(vector<string>& wordsDict) {// 预处理每个单词的位置for (int i = 0; i < wordsDict.size(); i++) {wordToIndices[wordsDict[i]].push_back(i);}}int shortest(string word1, string word2) {vector<int>& indices1 = wordToIndices[word1];vector<int>& indices2 = wordToIndices[word2];int minDistance = INT_MAX;// 计算两个位置列表中的最短距离for (int idx1 : indices1) {for (int idx2 : indices2) {minDistance = min(minDistance, abs(idx1 - idx2));}}return minDistance;}
};
方法二:双指针优化
C#实现
public class WordDistance {private Dictionary<string, List<int>> wordToIndices;public WordDistance(string[] wordsDict) {wordToIndices = new Dictionary<string, List<int>>();// 预处理每个单词的位置for (int i = 0; i < wordsDict.Length; i++) {if (!wordToIndices.ContainsKey(wordsDict[i])) {wordToIndices[wordsDict[i]] = new List<int>();}wordToIndices[wordsDict[i]].Add(i);}}public int Shortest(string word1, string word2) {List<int> indices1 = wordToIndices[word1];List<int> indices2 = wordToIndices[word2];int i = 0, j = 0;int minDistance = int.MaxValue;// 使用双指针计算最短距离while (i < indices1.Count && j < indices2.Count) {int idx1 = indices1[i];int idx2 = indices2[j];minDistance = Math.Min(minDistance, Math.Abs(idx1 - idx2));// 移动指向较小位置的指针if (idx1 < idx2) {i++;} else {j++;}}return minDistance;}
}
Python实现
class WordDistance:def __init__(self, wordsDict: List[str]):self.locations = {}# 预处理每个单词的位置for i, word in enumerate(wordsDict):if word not in self.locations:self.locations[word] = []self.locations[word].append(i)def shortest(self, word1: str, word2: str) -> int:locations1 = self.locations[word1]locations2 = self.locations[word2]i, j = 0, 0min_dist = float('inf')# 使用双指针计算最短距离while i < len(locations1) and j < len(locations2):min_dist = min(min_dist, abs(locations1[i] - locations2[j]))# 移动指向较小位置的指针if locations1[i] < locations2[j]:i += 1else:j += 1return min_dist
C++实现
class WordDistance {
private:unordered_map<string, vector<int>> wordToIndices;public:WordDistance(vector<string>& wordsDict) {// 预处理每个单词的位置for (int i = 0; i < wordsDict.size(); i++) {wordToIndices[wordsDict[i]].push_back(i);}}int shortest(string word1, string word2) {vector<int>& indices1 = wordToIndices[word1];vector<int>& indices2 = wordToIndices[word2];int i = 0, j = 0;int minDistance = INT_MAX;// 使用双指针计算最短距离while (i < indices1.size() && j < indices2.size()) {int idx1 = indices1[i];int idx2 = indices2[j];minDistance = min(minDistance, abs(idx1 - idx2));// 移动指向较小位置的指针if (idx1 < idx2) {i++;} else {j++;}}return minDistance;}
};
性能分析
方法一:预处理位置索引
- 初始化时间复杂度:O(n),其中 n 是
wordsDict
的长度。我们需要遍历整个数组一次来建立索引。 - 查询时间复杂度:O(m * k),其中 m 和 k 分别是 word1 和 word2 在数组中出现的次数。在最坏情况下,我们需要比较每对位置。
- 空间复杂度:O(n),用于存储所有单词的位置索引。
方法二:双指针优化
- 初始化时间复杂度:O(n),与方法一相同。
- 查询时间复杂度:O(m + k),其中 m 和 k 分别是 word1 和 word2 在数组中出现的次数。使用双指针方法,我们只需遍历两个位置列表一次。
- 空间复杂度:O(n),与方法一相同。
方法对比
方法 | 初始化时间 | 查询时间 | 空间复杂度 | 优势 | 劣势 |
---|---|---|---|---|---|
预处理位置索引 | O(n) | O(m * k) | O(n) | 实现简单直观 | 查询效率较低 |
双指针优化 | O(n) | O(m + k) | O(n) | 查询效率高 | 无明显劣势 |
设计思路分析
-
空间与时间权衡:该设计在初始化时预先计算并存储所有单词的位置,牺牲一些空间来换取更快的查询速度。这适用于查询次数远多于单词数量的情况。
-
双指针技巧:利用位置列表的有序性,通过双指针算法将查询复杂度从 O(m*k) 降低到 O(m+k),显著提高了查询效率。
-
哈希表索引:使用哈希表按单词索引位置列表,实现了 O(1) 时间的位置列表查找。
相关题目
- LeetCode 第243题:最短单词距离
- LeetCode 第245题:最短单词距离 III
- LeetCode 第249题:移位字符串分组
相关文章:
LeetCode第244题_最短单词距离II
LeetCode第244题:最短单词距离II 问题描述 设计一个类,接收一个单词数组 wordsDict,并实现一个方法,该方法能够计算两个不同单词在该数组中出现位置的最短距离。 你需要实现一个 WordDistance 类: WordDistance(String[] word…...
Linux 中替换文件中的某个字符串
如果你想在 Linux 中替换文件中的某个字符串,可以使用以下命令: 1. 基本替换(sed 命令) sed -i s/原字符串/新字符串/g 文件名示例:将 file.txt 中所有的 old_text 替换成 new_text sed -i s/old_text/new_text/g fi…...

python3GUI--基于PyQt5+DeepSort+YOLOv8智能人员入侵检测系统(详细图文介绍)
文章目录 一.前言二.技术介绍1.PyQt52.DeepSort3.卡尔曼滤波4.YOLOv85.SQLite36.多线程7.入侵人员检测8.ROI区域 三.核心功能1.登录注册1.登录2.注册 2.主界面1.主界面简介2.数据输入3.参数配置4.告警配置5.操作控制台6.核心内容显示区域7.检…...

5. TypeScript 类型缩小
在 TypeScript 中,类型缩小(Narrowing)是指根据特定条件将变量的类型细化为更具体的过程。它帮助开发者编写更精确、更准确的代码,确保变量在运行时只以符合其类型的方式进行处理。 一、instanceof 缩小类型 TypeScript 中的 in…...
Python_day48随机函数与广播机制
在继续讲解模块消融前,先补充几个之前没提的基础概念 尤其需要搞懂张量的维度、以及计算后的维度,这对于你未来理解复杂的网络至关重要 一、 随机张量的生成 在深度学习中经常需要随机生成一些张量,比如权重的初始化,或者计算输入…...

【QT】qtdesigner中将控件提升为自定义控件后,css设置样式不生效(已解决,图文详情)
目录 0.背景 1.解决思路 2.详细代码 0.背景 实际项目中遇到的问题,描述如下: 我在qtdesigner用界面拖了一个QTableView控件,object name为【tableView_electrode】,然后【提升为】了自定义的类【Steer_Electrode_Table】&…...

【Docker 02】Docker 安装
🌈 一、各版本的平台支持情况 ⭐ 1. Server 版本 Server 版本的 Docker 就只有个命令行,没有界面。 Platformx86_64 / amd64arm64 / aarch64arm(32 - bit)s390xCentOs√√Debian√√√Fedora√√Raspbian√RHEL√SLES√Ubuntu√√√√Binaries√√√ …...
【大厂机试题+算法可视化】最长的指定瑕疵度的元音子串
题目 开头和结尾都是元音字母(aeiouAEIOU)的字符串为元音字符串,其中混杂的非元音字母数量为其瑕疵度。比如: “a” 、 “aa”是元音字符串,其瑕疵度都为0 “aiur”不是元音字符串(结尾不是元音字符) “…...
【免杀】C2免杀技术(十五)shellcode混淆uuid/ipv6/mac
针对 shellcode 混淆(Shellcode Obfuscation) 的实战手段还有很多,如下表所示: 类型举例目的编码 / 加密XOR、AES、RC4、Base64、Poly1305、UUID、IP/MAC改变字节特征,避开静态签名或 YARA结构伪装PE Stub、GIF/PNG 嵌入、RTF OLE、UUID、IP/MAC看起来像合法文件/数据,弱…...
Java严格模式withResolverStyle解析日期错误及解决方案
在Java中使用DateTimeFormatter并启用严格模式(ResolverStyle.STRICT)时,解析日期字符串"2025-06-01"报错的根本原因是:模式字符串中的年份格式yyyy被解释为YearOfEra(纪元年份),而非…...
Async-profiler 内存采样机制解析:从原理到实现
引言 在 Java 性能调优的工具箱中,async-profiler 是一款备受青睐的低开销采样分析器。它不仅能分析 CPU 热点,还能精确追踪内存分配情况。本文将深入探讨 async-profiler 实现内存采样的多种机制,结合代码示例解析其工作原理。 为什么需要内…...
C++ 使用 ffmpeg 解码 rtsp 流并获取每帧的YUV数据
一、简介 FFmpeg 是一个开源的多媒体处理框架,非常适用于处理音视频的录制、转换、流化和播放。 二、代码 示例代码使用工作线程读取rtsp视频流,自动重连,支持手动退出,解码并将二进制文件保存下来。 注意: 代…...
Java毕业设计:办公自动化系统的设计与实现
JAVA办公自动化系统 一、系统概述 本办公自动化系统基于Java EE平台开发,实现了企业日常办公的数字化管理。系统包含文档管理、流程审批、会议管理、日程安排、通讯录等核心功能模块,采用B/S架构设计,支持多用户协同工作。系统使用Spring B…...

论文笔记:Large Language Models for Next Point-of-Interest Recommendation
SIGIR 2024 1 intro 传统的基于数值的POI推荐方法在处理上下文信息时存在两个主要限制 需要将异构的LBSN数据转换为数字,这可能导致上下文信息的固有含义丢失仅依赖于统计和人为设计来理解上下文信息,缺乏对上下文信息提供的语义概念的理解 ——>使用…...

LeetCode 2894.分类求和并作差
目录 题目: 题目描述: 题目链接: 思路: 思路一详解(遍历 判断): 思路二详解(数学规律/公式): 代码: Java思路一(遍历 判断&a…...
n8n:解锁自动化工作流的无限可能
在当今快节奏的数字时代,无论是企业还是个人,都渴望提高工作效率,减少重复性任务的繁琐操作。而 n8n,这个强大的开源自动化工具,就像一位智能的数字助手,悄然走进了许多人的工作和生活,成为提升…...
链结构与工作量证明7️⃣:用 Go 实现比特币的核心机制
链结构与工作量证明:用 Go 实现比特币的核心机制 如果你用 Go 写过区块、算过哈希,也大致理解了非对称加密、数据序列化这些“硬核知识”,那么恭喜你,现在我们终于可以把这些拼成一条完整的“区块链”。 不过别急,这一节我们重点搞懂两件事: 区块之间是怎么连接成“链”…...
CMake系统学习笔记
CMake系统学习笔记 基础操作 最基本的案例 // code #include <iostream>int main() {std::cout << "hello world " << std::endl;return 0; }// CMakeLists.txt cmake_minimum_required(VERSION 3.0)# 定义当前工程名称 project(demo)add_execu…...

CCF 开源发展委员会 “开源高校行“ 暨红山开源 + OpenAtom openKylin 高校行活动在西安四所高校成功举办
点击蓝字 关注我们 CCF Opensource Development Committee CCF开源高校行 暨红山开源 openKylin 高校行 西安站 5 月 26 日至 28 日,CCF 开源发展委员会 "开源高校行" 暨红山开源 OpenAtom openKylin 高校行活动在西安四所高校(西安交通大学…...
【Go语言基础【6】】字符串格式化说明
文章目录 零、格式化常用场景一、Go 字符串格式化核心概念二、常用格式化占位符1. 整数类型2. 浮点数类型3. 字符串与布尔类型4. 指针与通用类型 三、宽度与精度控制1. 宽度控制2. 精度控制(浮点数/字符串) 零、格式化常用场景 数值转字符串:…...
调试快捷键 pycharm vscode
目录 调试快捷键 pycharm vscode 修改快捷键 方法 1:通过菜单打开 方法 2:用快捷键打开 调试快捷键 pycharm Resume Program F9 Step Over F8 两个离的比较近,比较方便,比vscode的好。 vscode Continue F5 改为F9 S…...

RabbitMQ work模型
Work 模型是 RabbitMQ 最基础的消息处理模式,核心思想是 多个消费者竞争消费同一个队列中的消息,适用于任务分发和负载均衡场景。同一个消息只会被一个消费者处理。 当一个消息队列绑定了多个消费者,每个消息消费的个数都是平摊的&a…...

基于微信小程序的作业管理系统源码数据库文档
作业管理系统 摘 要 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是采用java语言技术和微信小程序来完成对系统的…...
C++参数传递 a与a的区别
在 C 中,&a(引用)和 a(值传递) 的关键区别在于 参数如何传递给函数,以及由此引发的 性能、语义和安全问题。 最核心的在于你想不想传入的参数被改变,如果想,就用参数传递&#…...

CSS(2)
文章目录 Emmet语法快速生成HTML结构语法 Snipaste快速生成CSS样式语法快速格式化代码 快捷键(VScode)CSS 的复合选择器什么是复合选择器交集选择器后代选择器(重要)子选择器(重要)并集选择器(重要)**链接伪类选择器**focus伪类选…...
Linux--vsFTP配置篇
一、vsFTP 简介 vsftpd(Very Secure FTP Daemon)是 Linux 下常用的 FTP 服务程序,具有安全性高、效率高和稳定性好等特点。支持匿名访问、本地用户登录、虚拟用户等多种认证方式,并可灵活控制权限。 二、安装与启动 1. 检查是否已…...

【RabbitMQ】- Channel和Delivery Tag机制
在 RabbitMQ 的消费者代码中,Channel 和 tag 参数的存在是为了实现消息确认机制(Acknowledgment)和精细化的消息控制。 Channel 参数 作用 Channel 是 AMQP 协议的核心操作接口,通过它可以直接与 RabbitMQ 交互: 手…...
.Net Framework 4/C# 面向对象编程进阶
一、继承 (一)使用继承 子类可以继承父类原有的属性和方法,也可以增加原来父类不具备的属性和方法,或者直接重写父类中的某些方法。 C# 中使用“:”来表示两个类的继承。子类不能访问父类的私有成员,但是可以访问其公有成员,即只要使用 public 声明类成员,就既可以让一…...

NLP学习路线图(三十四): 命名实体识别(NER)
一、命名实体识别(NER)是什么? 命名实体识别(Named Entity Recognition, NER)是自然语言处理中的一项关键序列标注任务。其核心目标是从非结构化的文本中自动识别出特定类别的名词性短语,并将其归类到预定义的类别中。 核心目标:找到文本中提到的命名实体,并分类。 典…...

【HTML】HTML 与 CSS 基础教程
作为 Java 工程师,掌握 HTML 和 CSS 也是需要的,它能让你高效与前端团队协作、调试页面元素,甚至独立完成简单页面开发。本文将用最简洁的方式带你掌握核心概念。 一、HTML,网页骨架搭建 核心概念:HTML通过标签定义内…...