当前位置: 首页 > news >正文

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题?

目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时间久的的训练时间久的。
推理时间久的检测器一般依赖于复杂的后处理逻辑或沉重的检测 head。尽管这些设计能提升准确率和收敛速度,但是推理速度很慢,不适合实时应用。

为了降低推理速度,人们尝试去简化检测 head 与后处理,同时能维持准确率。CenterNet 的推理速度快,但是需要很长的训练时间,这是因为简化后的网络很难训练,过度依赖于数据增强和长训练周期。比如,CenterNet 在 MS COCO 数据集上需要训练 140 140 140个 epochs,而第一类方法只要训练 12 12 12epochs。

研究发现,如果 batch size 越大,可采取较大的学习率,二者之间服从某种线性关系。作者发现,从标注框编码更多的训练样本,与增大 batch size 的作用相似。与特征提取相比,编码特征、计算损失的时间微乎其微。这样我们就可以很低的代价来加快收敛。CenterNet 在回归目标的尺寸时,只关注目标的中心点,无法利用目标中心点附近的信息,造成收敛速度很慢。

2. 提出了什么方法?

为了平衡速度和准确率,作者提出了 TTFNet,它具有 light-head、单阶段和 anchor-free 的特点,推理速度很快。为了降低训练时间,作者发现从标注框中编码更多的训练样本,与增大 batch size 作用相似,从而可以增大学习率、加快训练过程。最后,在进行定位和回归时,提出利用高斯核来编码训练样本的方法。于是网络可以更好地利用标注框,产生更多的监督信号,实现快速收敛。通过高斯核构建出目标中心的附近区域,从该区域内提取训练样本。将高斯概率作为回归样本的权重使用,这样能更加关注于中心附近的样本。该方法能减少模糊的、低质量样本,无需 FPN 结构。此外,也无需预测偏移量来修正预测结果。

Motivation

编码更多的训练样本与增大 batch size 是相似的,都可以提供更多的监督信号。这里的“训练样本”是指标注框内编码的特征。在随机梯度下降(SGD)中,权重更新表示为:

w t + 1 = w t − η 1 n ∑ x ∈ B Δ l ( x , w t ) w_{t+1}=w_t - \eta\frac{1}{n}\sum_{x\in B}\Delta l(x,w_t) wt+1=wtηn1xBΔl(x,wt)

w w w是网络权重, B B B是训练集里的 mini-batch, n = ∣ B ∣ n=|B| n=B是 mini-batch size, η \eta η是学习率, l ( x , w ) l(x,w) l(x,w)是图像 x x x的损失计算。
对于目标检测任务,图像 x x x包含多个标注边框,这些边框会被编码为训练样本 s ∈ S x s\in S_x sSx m x = ∣ S x ∣ m_x=|S_x| mx=Sx是图像 x x x中所有边框产生的样本个数。因此上式可写为:

w t + 1 = w t − η 1 n ∑ x ∈ B 1 m x ∑ s ∈ S x Δ l ( s , w t ) w_{t+1}=w_t - \eta \frac{1}{n}\sum_{x\in B} \frac{1}{m_x} \sum_{s\in S_x} \Delta l(s, w_t) wt+1=wtηn1xBmx1sSxΔl(s,wt)

为了更简洁,我们假设 mini-batch B B B里的每张图像 x x x m x m_x mx都相等。对于每个训练样本 s s s,上式写为:

w t + 1 = w t − η 1 n m ∑ s ∈ B Δ l ( s , w t ) w_{t+1}=w_t - \eta \frac{1}{nm}\sum_{s\in B}\Delta l(s,w_t) wt+1=wtηnm1sBΔl(s,wt)
根据线性缩放规则,如果 batch size 乘以 k k k,则学习率也要乘以 k k k,除非网络变动很大,或使用了非常大的 mini-batch。只有当我们能假设 Δ l ( x , w t ) ≈ Δ l ( x , w t + j ) , j < k \Delta l(x,w_t)\approx \Delta l(x, w_{t+j}),j<k Δl(x,wt)Δl(x,wt+j),j<k时,用小 mini-batch B j B_j Bj k k k次、学习率为 η \eta η,与用较大的 mini-batch ∪ j ∈ [ 0 , k ) B j \cup_{j\in [0,k)}B_j j[0,k)Bj、学习率为 k η k\eta kη 1 1 1次是等价的。这里,我们只关注训练样本 s s s,mini-batch size ∣ B ∣ = n m |B|=nm B=nm。作者提出了一个相似的结论:每个 mini-batch 内的训练样本个数乘以 k k k,则学习率乘以 l l l 1 ≤ l ≤ k 1\leq l\leq k 1lk
CenterNet 的推理速度很快,但训练时间很长。它在训练过程中使用了复杂的数据增强方法。尽管这些增强能提升训练准确率,但是收敛很慢。为了排除它们对收敛速度的影响,实验时不使用数据增强,而且加大学习率。如下图,较大的学习率能加快收敛,但是准确率下降,会造成过拟合。这是因为 CenterNet 在训练时只会在目标中心位置编码一个回归样本,这使得 CenterNet 必须依赖于数据增强和长训练周期。
在这里插入图片描述

Approach

Background

CenterNet 将目标检测任务分为两个部分:中心定位和尺寸回归。在定位任务,它采取高斯核输出热力图,网络在目标中心附近产生高激活值。在回归任务,将目标中心点的像素定义为训练样本,直接预测目标的宽度和高度。此外,它会预测目标因输出步长而造成的偏移。网络在推理时,目标中心点附近的激活值较高,NMS 可被替换为其它操作。为了去除 NMS,作者采取了与中心定位相似的策略,在高斯核中加入了边框的宽高比。CenterNet 没有考虑到这一点,不是最优的

对于尺寸回归,作者将高斯区域内所有的像素点都当作训练样本。此外,使用目标大小和高斯概率计算出样本的权重,更好地利用信息。该方法无需预测偏移量来修正下采样造成的误差,因此更加简洁、高效。下图中,主干网络提取特征,然后上采样到原图 1 / 4 1/4 1/4分辨率。然后这些特征用于定位和回归任务。定位时,网络在目标中心输出高激活值。回归时,边框的高斯区域内的所有样本都能直接预测它到四条边的距离

在这里插入图片描述

Gaussian Kernels for Training

给定一张图片,网络分别预测特征 H ^ ∈ R N × C × H r × W r \hat{H}\in \mathcal{R}^{N\times C\times \frac{H}{r}\times \frac{W}{r}} H^RN×C×rH×rW S ^ ∈ R N × 4 × H r × W r \hat{S}\in \mathcal{R}^{N\times 4\times \frac{H}{r}\times \frac{W}{r}} S^RN×4×rH×rW。前者表示目标中心点在哪,后者获取目标尺寸的信息。 N , C , H , W , r N,C,H,W,r N,C,H,W,r分别是 batch size、类别数、输入图像的高度和宽度、输出步长。实验中, C = 80 , r = 4 C=80,r=4 C=80,r=4。在定位和回归任务,都使用了高斯核,使用标量 α , β \alpha,\beta α,β来控制高斯核大小。

Object Localization

假设第 m m m个标注框属于第 c m c_m cm个类别,首先将它线性映射到特征图尺度。然后 2D 高斯核 K m ( x , y ) = exp ⁡ ( − ( x − x 0 ) 2 2 σ x 2 − ( y − y 0 ) 2 2 σ y 2 ) \mathbf{K}_m(x,y)=\exp({-\frac{(x-x_0)^2}{2\sigma_x^2}}-\frac{(y-y_0)^2}{2\sigma_y^2}) Km(x,y)=exp(2σx2(xx0)22σy2(yy0)2)用于输出 H m ∈ R 1 × H r × W r H_m\in \mathcal{R}^{1\times \frac{H}{r}\times \frac{W}{r}} HmR1×rH×rW,其中 σ x = α ⋅ w 6 , σ y = α ⋅ h 6 \sigma_x=\frac{\alpha\cdot w}{6},\sigma_y=\frac{\alpha\cdot h}{6} σx=6αw,σy=6αh。最后,对 H m H_m Hm使用 element-wise max 操作,更新 H H H的第 c m c_m cm个通道。 H m H_m Hm由参数 α \alpha α、中心位置 ( x 0 , y 0 ) m (x_0,y_0)_m (x0,y0)m和边框大小 ( h , w ) m (h,w)_m (h,w)m决定。使用 ( ⌊ x r ⌋ , ⌊ y r ⌋ ) (\lfloor\frac{x}{r}\rfloor, \lfloor\frac{y}{r}\rfloor) (⌊rx,ry⌋)使中心点落在某像素点上。网络中,设定 α = 0.54 \alpha=0.54 α=0.54

将高斯分布的峰值点(边框中心像素点)当作正样本,其它像素点当作负样本。

给定预测 H ^ \hat{H} H^和定位目标 H H H
L l o c = − 1 M { ( 1 − H ^ i j c ) α f log ⁡ ( H ^ i j c ) if H i j c = 1 ( 1 − H i j c ) β f H ^ i j c α f log ⁡ ( 1 − H ^ i j c ) , otherwise L_{loc} = -\frac{1}{M}\left\{ \begin{array}{ll} (1-\hat{H}_{ijc})^{\alpha_f}\log(\hat{H}_{ijc})\quad\quad\quad\quad\quad\quad\quad\text{if}\quad H_{ijc}=1 \\ (1-H_{ijc})^{\beta_f}\hat{H}^{\alpha_f}_{ijc}\log (1-\hat{H}_{ijc}),\quad\quad\quad \text{otherwise} \end{array} \right. Lloc=M1{(1H^ijc)αflog(H^ijc)ifHijc=1(1Hijc)βfH^ijcαflog(1H^ijc),otherwise

其中 α f , β f \alpha_f,\beta_f αf,βf是 focal loss 的超参。 M M M表示标注框的个数。 α f = 0.2 , β f = 4 \alpha_f=0.2,\beta_f=4 αf=0.2,βf=4

Size Regression

给定特征图尺度上的第 m m m个标注框,用高斯核输出 S m ∈ R 1 × H r × W r S_m\in \mathcal{R}^{1\times \frac{H}{r}\times \frac{W}{r}} SmR1×rH×rW β \beta β控制高斯核大小。 S m S_m Sm中的非零区域叫做高斯区域 A m A_m Am A m A_m Am总是存在于第 m m m个边框内,因此被叫做 sub-area。

Sub-area 内每个像素都是一个回归样本。给定 A m A_m Am内的像素 ( i , j ) (i,j) (i,j)及输出步长 r r r,回归目标定义为 ( i r , j r ) (ir,jr) (ir,jr)到第 m m m边框四条边的距离,记做一个四维向量 ( w l , h t , w r , h b ) i j m (w_l,h_t,w_r,h_b)^m_{ij} (wl,ht,wr,hb)ijm ( i , j ) (i,j) (i,j)位置的预测框表示为:

x ^ 1 = i r − w ^ l s , y ^ 1 = j r − h ^ t s \hat{x}_1=ir-\hat{w}_ls, \quad\quad \hat{y}_1=jr-\hat{h}_ts x^1=irw^ls,y^1=jrh^ts
x ^ 2 = i r + w ^ r s , y ^ 2 = j r + h ^ b s \hat{x}_2=ir+\hat{w}_rs, \quad\quad \hat{y}_2=jr+\hat{h}_bs x^2=ir+w^rs,y^2=jr+h^bs

s s s是个固定标量,扩大预测结果,从而降低优化难度。实验中 s = 16 s=16 s=16。预测框 ( x ^ 1 , y ^ 1 , x ^ 2 , y ^ 2 ) (\hat{x}_1,\hat{y}_1,\hat{x}_2,\hat{y}_2) (x^1,y^1,x^2,y^2)位于图像尺度,而非特征图尺度。

不存在于任何 sub-area 内的像素,在训练时会被忽略。如果一个像素同时存在于多个 sub-area(模糊样本),则训练 target 设为面积较小的目标。

给定预测结果 S ^ \hat{S} S^和回归目标 S S S,从 S S S中汇集训练目标 S ′ ∈ R N r e g × 4 S'\in \mathcal{R}^{N_{reg}\times 4} SRNreg×4,及其对应的预测结果 S ′ ^ ∈ R N r e g × 4 \hat{S'}\in \mathcal{R}^{N_{reg}\times 4} S^RNreg×4 N r e g N_{reg} Nreg表示回归样本数。如上式所做的,对于这些样本,解码出预测边框,及其对应的标注框。使用 GIoU 计算损失:

L r e g = 1 N r e g ∑ ( i , j ) ∈ A m GIoU ( B ^ i j , B m ) × W i j L_{reg}=\frac{1}{N_{reg}}\sum_{(i,j)\in A_m} \text{GIoU}(\hat{B}_{ij},B_m)\times W_{ij} Lreg=Nreg1(i,j)AmGIoU(B^ij,Bm)×Wij
B ^ i j \hat{B}_{ij} B^ij表示解码后的边框 ( x ^ 1 , y ^ 1 , x ^ 2 , y ^ 2 ) i j (\hat{x}_1,\hat{y}_1,\hat{x}_2,\hat{y}_2)_{ij} (x^1,y^1,x^2,y^2)ij B m = ( x 1 , y 1 , x 2 , y 2 ) m B_m=({x}_1,{y}_1,{x}_2,{y}_2)_m Bm=(x1,y1,x2,y2)m表示图像尺度的第 m m m个标注框。 W i j W_{ij} Wij是样本权重,平衡各样本的损失。

因为目标尺度都不一样,大目标可能产生几千个样本,而小目标只能产生很少。损失归一化后,小目标的损失几乎都没了,这不利于检测小目标。因此,样本权重 W i j W_{ij} Wij发挥着重要作用,平衡损失。假定 ( i , j ) (i,j) (i,j)位于第 m m m个标注框的子区域 A m A_m Am内,

W i j = { log ⁡ ( a m ) × G m ( i , j ) ∑ ( x , y ) ∈ A m G m ( x , y ) if ( i , j ) ∈ A m 0 if ( i , j ) ∉ A m W_{ij} = \left\{ \begin{array}{ll} \log(a_m)\times \frac{G_m(i,j)}{\sum_{(x,y)\in A_m} G_m(x,y)} \quad\quad\quad\quad\text{if}\quad (i,j)\in A_m \\ 0\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\text{if}\quad (i,j)\notin A_m \end{array} \right. Wij={log(am)×(x,y)AmGm(x,y)Gm(i,j)if(i,j)Am0if(i,j)/Am

其中 G m ( i , j ) G_m(i,j) Gm(i,j) ( i , j ) (i,j) (i,j)位置的高斯概率。 a m a_m am是第 m m m个边框的面积。该机制能更好地利用大目标的标注信息,保留小目标的信息。它也能突出目标中心附近的样本,减少模糊和低质量样本。

Total Loss

总损失 L L L包括了定位损失 L l o s L_{los} Llos和回归损失 L r e g L_{reg} Lreg,用两个标量加权。 L = w l o g L l o c + w r e g L r e g L=w_{log}L_{loc}+w_{reg}L_{reg} L=wlogLloc+wregLreg,本文设定 w l o c = 1.0 , w r e g = 5.0 w_{loc}=1.0, w_{reg}=5.0 wloc=1.0,wreg=5.0

Overall Design

TTFNet 的结构如上图所示。主干使用 ResNet 和 DarkNet。主干提取特征后,上采样到原图的 1 / 4 1/4 1/4分辨率,用 Modulated Deform Conv 和上采样层实现,后面跟着 BN 层和 ReLU 层。

然后,上采样特征分别输入进两个 heads。定位 head 对目标中心附近的位置输出高激活值,而回归 head 直接预测这些位置到边框四条边的距离。因为目标中心对应特征图的局部极大值,用 2D 最大池化来抑制非极大值。然后用局部极大值来汇总回归结果。最后得到检测结果。

该方法充分利用了大中目标的标注信息,而小目标的提升有限。为了提升短训练周期中小目标的表现,通过短路连接来引入高分辨率、低层级特征。短路连接引入了主干网络第2、3、4阶段的特征,每个连接用 3 × 3 3\times 3 3×3卷积实现。短路连接的第2、3、4阶段的层数分别设为3、2、1,每层后跟着一个 ReLU,除了最后一个。

相关文章:

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题&#xff1f; 目前的目标检测器很少能做到快速训练、快速推理&#xff0c;并同时保持准确率。直觉上&#xff0c;推理越快的检测器应该训练也很快&#xff0c;但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类&#xff1a;推理时…...

HTTP改HTTPS

tomcat中http协议改https 第一步&#xff0c;配置server.xml <?xml version"1.0" encoding"UTF-8"?> <Server port"8005" shutdown"SHUTDOWN"><Listener className"org.apache.catalina.startup.VersionLogger…...

网络层中一些零碎且易忘的知识点

异构网络&#xff1a;指传输介质、数据编码方式、链路控制协议以及数据单元格式和转发机制不同&#xff0c;异构即物理层和数据链路层均不同RIP、OSPF、BGP分别是哪一层的协议&#xff1a; -RIPOSPFBGP所属层次应用层网络层应用层封装在什么协议中UDPIPTCP 一个主机可以有多个I…...

【RabbitMQ】之高可用集群搭建

目录 一、RabbitMQ 集群原理 1、默认集群原理2、镜像集群原理3、负载均衡方案 二、RabbitMQ 高可用集群搭建 1、RabbitMQ 集群搭建2、配置镜像队列3、HAProxy 环境搭建4、Keepalived 环境搭建 一、RabbitMQ 集群简介 1、默认集群原理 3-1、RabbitMQ 集群简介 单台 RabbitM…...

【node.js】01-fs读写文件内容

目录 一、fs.readFile() 读取文件内容 二、fs.writeFile() 向指定的文件中写入内容 案例&#xff1a;整理txt 需求&#xff1a; 代码&#xff1a; 一、fs.readFile() 读取文件内容 代码&#xff1a; //导入fs模块&#xff0c;从来操作文件 const fs require(fs)// 2.调…...

GitHub仓库如何使用

核心&#xff1a;GitHub仓库如何使用 目录 1.创建仓库&#xff1a; 2.克隆仓库到本地&#xff1a; 3.添加、提交和推送更改&#xff1a; 4.分支管理&#xff1a; 5.拉取请求&#xff08;Pull Requests&#xff09;&#xff1a; 6.合并代码&#xff1a; 7.其他功能&…...

雪花算法,在分布式环境下实现高效的ID生成

其实雪花算法比较简单&#xff0c;可能称不上什么算法就是一种构造UID的方法。 点1&#xff1a;UID是一个long类型的41位时间戳&#xff0c;10位存储机器码&#xff0c;12位存储序列号。 点2&#xff1a;时间戳的单位是毫秒&#xff0c;可以同时链接1024台机器&#xff0c;每台…...

使用css 动画实现,水波纹的效果

每日鸡汤&#xff1a;每个你想要学习的瞬间都是未来的你向自己求救 需求&#xff0c;实现水波纹动画效果&#xff0c;要求中心一个圆点&#xff0c;然后有3个圈&#xff0c;一圈一圈的向里面缩小。 说实话我第一个想到了给3个圈设置不同的宽高&#xff0c;然后设置动画0-100%&a…...

Unity光照相关知识和实践 (烘焙光照,环境光设置,全局光照)

简介 本文将会通过一个简单的场景搭建&#xff0c;介绍如何使用烘焙光照以及相关的注意事项。另外还介绍了Unity内全局光照&#xff08;GI&#xff09;的知识和GI实际在游戏内的表现效果。 Unity关于光照相关的参考文档地址&#xff1a;https://docs.unity.cn/cn/current/Man…...

【设计模式——学习笔记】23种设计模式——适配器模式Adapter(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 介绍生活中的案例基础介绍工作原理分类应用场景 案例类适配器模式例1介绍类图代码实现优缺点分析 例2类图代码实现 对象适配器模式&#xff08;常用方式&#xff09;例1介绍类图代码实现优缺点分析 例2代码实现 接口适配器模式介绍类图代码实现 登场角色类图类适配器模…...

Android Unit Test

一、测试基础知识 1.1 测试级别 测试金字塔&#xff08;如图 2 所示&#xff09;说明了应用应如何包含三类测试&#xff08;即小型、中型和大型测试&#xff09;&#xff1a; 小型测试是指单元测试&#xff0c;用于验证应用的行为&#xff0c;一次验证一个类。 中型测试是指…...

docker更新jenkins

下载文件 1、jenkins提示下载 2、官网下载jenkins官网 文件放服务器内 通过工具把jenkins.war放进服务器例如tmp 文件复制到docker的jenkins容器 docker cp 路径文件 容器id:/{后面不接内容为根路径} docker cp /tmp/jenkins.war 53dc1c71058a:/进入容器内 docker exec …...

一种新的基于区域的在线活动轮廓模型研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

【Docker】基于Dockerfile搭建LNMP架构

一、项目环境 公司在实际的生产环境中,需要使用Docker 技术在一台主机上创建LNMP服务并运行Wordpress网站平台。然后对此服务进行相关的性能调优和管理工作。 1. 环境配置 主机操作系统IP地址主要软件DockerCentOS 7.3 x86_64192.168.145.15Docker 19.03容器ip地址规划 ngin…...

爬虫003_pycharm的安装以及使用_以及python脚本模版设置---python工作笔记021

这里我们用ide,pycharm来编码,看一看如何下载 这里我们下载这个社区办,这个是免费的,个人版是收费的 然后勾选以后 安装以后我们来创建一个项目 这里可以选择python的解释器,选择右边的... 这里我们找到我们自己安装的python解释器...

远程xml读取解析,将image url下载到本地,延时队列定时删除文件,图片访问路径保存在数据库中

远程xml部分内容 <imagelist name"FY4A AGRI IMG REGI MTCC GLL" tag"FY4A AGRI IMG REGI MTCC GLL"><image time"2023-07-25 22:30 (UTC)" desc"FY4A AGRI IMG REGI MTCC GLL" url"http://img.nsmc.org.cn/PORTAL/FY4…...

firefox笔记-Centos7离线安装firefox

目前&#xff08;2023-03-22 16:41:35&#xff09;Centos7自带的firefox已经很新了是2020年的。主要原因是有个web项目&#xff0c;用2020年的firefox打不开。 发到互联网上是2023-07-24。 报错是js有问题&#xff0c;估计是搞前端的只做了chrome适应&#xff0c;没做firefox…...

Flutter:滑动面板

前言 无意中发现了这个库&#xff0c;发现现在很多app中都有类似的功能。以手机b站为例&#xff0c;当你在看视频时&#xff0c;点击评论&#xff0c;视频会向上偏移&#xff0c;下方划出评论界面。 sliding_up_panel SlidingUpPanel是一个Flutter插件&#xff0c;用于创建滑…...

RocketMQ概论

目录 前言&#xff1a; 1.概述 2.下载安装、集群搭建 3.消息模型 4.如何保证吞吐量 4.1.消息存储 4.1.1顺序读写 4.1.2.异步刷盘 4.1.3.零拷贝 4.2.网络传输 前言&#xff1a; RocketMQ的代码示例在安装目录下有全套详细demo&#xff0c;所以本文不侧重于讲API这种死…...

任务的创建与删除

Q: 什么是任务&#xff1f; A: 任务可以理解为进程/线程&#xff0c;创建一个任务&#xff0c;就会在内存开辟一个空间。 比如&#xff1a; 玩游戏&#xff0c;打篮球&#xff0c;开车&#xff0c;都可以视为任务。 Windows 系统中的 MarkText 、谷歌浏览器、记事本&#xff0…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...