当前位置: 首页 > news >正文

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题?

目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时间久的的训练时间久的。
推理时间久的检测器一般依赖于复杂的后处理逻辑或沉重的检测 head。尽管这些设计能提升准确率和收敛速度,但是推理速度很慢,不适合实时应用。

为了降低推理速度,人们尝试去简化检测 head 与后处理,同时能维持准确率。CenterNet 的推理速度快,但是需要很长的训练时间,这是因为简化后的网络很难训练,过度依赖于数据增强和长训练周期。比如,CenterNet 在 MS COCO 数据集上需要训练 140 140 140个 epochs,而第一类方法只要训练 12 12 12epochs。

研究发现,如果 batch size 越大,可采取较大的学习率,二者之间服从某种线性关系。作者发现,从标注框编码更多的训练样本,与增大 batch size 的作用相似。与特征提取相比,编码特征、计算损失的时间微乎其微。这样我们就可以很低的代价来加快收敛。CenterNet 在回归目标的尺寸时,只关注目标的中心点,无法利用目标中心点附近的信息,造成收敛速度很慢。

2. 提出了什么方法?

为了平衡速度和准确率,作者提出了 TTFNet,它具有 light-head、单阶段和 anchor-free 的特点,推理速度很快。为了降低训练时间,作者发现从标注框中编码更多的训练样本,与增大 batch size 作用相似,从而可以增大学习率、加快训练过程。最后,在进行定位和回归时,提出利用高斯核来编码训练样本的方法。于是网络可以更好地利用标注框,产生更多的监督信号,实现快速收敛。通过高斯核构建出目标中心的附近区域,从该区域内提取训练样本。将高斯概率作为回归样本的权重使用,这样能更加关注于中心附近的样本。该方法能减少模糊的、低质量样本,无需 FPN 结构。此外,也无需预测偏移量来修正预测结果。

Motivation

编码更多的训练样本与增大 batch size 是相似的,都可以提供更多的监督信号。这里的“训练样本”是指标注框内编码的特征。在随机梯度下降(SGD)中,权重更新表示为:

w t + 1 = w t − η 1 n ∑ x ∈ B Δ l ( x , w t ) w_{t+1}=w_t - \eta\frac{1}{n}\sum_{x\in B}\Delta l(x,w_t) wt+1=wtηn1xBΔl(x,wt)

w w w是网络权重, B B B是训练集里的 mini-batch, n = ∣ B ∣ n=|B| n=B是 mini-batch size, η \eta η是学习率, l ( x , w ) l(x,w) l(x,w)是图像 x x x的损失计算。
对于目标检测任务,图像 x x x包含多个标注边框,这些边框会被编码为训练样本 s ∈ S x s\in S_x sSx m x = ∣ S x ∣ m_x=|S_x| mx=Sx是图像 x x x中所有边框产生的样本个数。因此上式可写为:

w t + 1 = w t − η 1 n ∑ x ∈ B 1 m x ∑ s ∈ S x Δ l ( s , w t ) w_{t+1}=w_t - \eta \frac{1}{n}\sum_{x\in B} \frac{1}{m_x} \sum_{s\in S_x} \Delta l(s, w_t) wt+1=wtηn1xBmx1sSxΔl(s,wt)

为了更简洁,我们假设 mini-batch B B B里的每张图像 x x x m x m_x mx都相等。对于每个训练样本 s s s,上式写为:

w t + 1 = w t − η 1 n m ∑ s ∈ B Δ l ( s , w t ) w_{t+1}=w_t - \eta \frac{1}{nm}\sum_{s\in B}\Delta l(s,w_t) wt+1=wtηnm1sBΔl(s,wt)
根据线性缩放规则,如果 batch size 乘以 k k k,则学习率也要乘以 k k k,除非网络变动很大,或使用了非常大的 mini-batch。只有当我们能假设 Δ l ( x , w t ) ≈ Δ l ( x , w t + j ) , j < k \Delta l(x,w_t)\approx \Delta l(x, w_{t+j}),j<k Δl(x,wt)Δl(x,wt+j),j<k时,用小 mini-batch B j B_j Bj k k k次、学习率为 η \eta η,与用较大的 mini-batch ∪ j ∈ [ 0 , k ) B j \cup_{j\in [0,k)}B_j j[0,k)Bj、学习率为 k η k\eta kη 1 1 1次是等价的。这里,我们只关注训练样本 s s s,mini-batch size ∣ B ∣ = n m |B|=nm B=nm。作者提出了一个相似的结论:每个 mini-batch 内的训练样本个数乘以 k k k,则学习率乘以 l l l 1 ≤ l ≤ k 1\leq l\leq k 1lk
CenterNet 的推理速度很快,但训练时间很长。它在训练过程中使用了复杂的数据增强方法。尽管这些增强能提升训练准确率,但是收敛很慢。为了排除它们对收敛速度的影响,实验时不使用数据增强,而且加大学习率。如下图,较大的学习率能加快收敛,但是准确率下降,会造成过拟合。这是因为 CenterNet 在训练时只会在目标中心位置编码一个回归样本,这使得 CenterNet 必须依赖于数据增强和长训练周期。
在这里插入图片描述

Approach

Background

CenterNet 将目标检测任务分为两个部分:中心定位和尺寸回归。在定位任务,它采取高斯核输出热力图,网络在目标中心附近产生高激活值。在回归任务,将目标中心点的像素定义为训练样本,直接预测目标的宽度和高度。此外,它会预测目标因输出步长而造成的偏移。网络在推理时,目标中心点附近的激活值较高,NMS 可被替换为其它操作。为了去除 NMS,作者采取了与中心定位相似的策略,在高斯核中加入了边框的宽高比。CenterNet 没有考虑到这一点,不是最优的

对于尺寸回归,作者将高斯区域内所有的像素点都当作训练样本。此外,使用目标大小和高斯概率计算出样本的权重,更好地利用信息。该方法无需预测偏移量来修正下采样造成的误差,因此更加简洁、高效。下图中,主干网络提取特征,然后上采样到原图 1 / 4 1/4 1/4分辨率。然后这些特征用于定位和回归任务。定位时,网络在目标中心输出高激活值。回归时,边框的高斯区域内的所有样本都能直接预测它到四条边的距离

在这里插入图片描述

Gaussian Kernels for Training

给定一张图片,网络分别预测特征 H ^ ∈ R N × C × H r × W r \hat{H}\in \mathcal{R}^{N\times C\times \frac{H}{r}\times \frac{W}{r}} H^RN×C×rH×rW S ^ ∈ R N × 4 × H r × W r \hat{S}\in \mathcal{R}^{N\times 4\times \frac{H}{r}\times \frac{W}{r}} S^RN×4×rH×rW。前者表示目标中心点在哪,后者获取目标尺寸的信息。 N , C , H , W , r N,C,H,W,r N,C,H,W,r分别是 batch size、类别数、输入图像的高度和宽度、输出步长。实验中, C = 80 , r = 4 C=80,r=4 C=80,r=4。在定位和回归任务,都使用了高斯核,使用标量 α , β \alpha,\beta α,β来控制高斯核大小。

Object Localization

假设第 m m m个标注框属于第 c m c_m cm个类别,首先将它线性映射到特征图尺度。然后 2D 高斯核 K m ( x , y ) = exp ⁡ ( − ( x − x 0 ) 2 2 σ x 2 − ( y − y 0 ) 2 2 σ y 2 ) \mathbf{K}_m(x,y)=\exp({-\frac{(x-x_0)^2}{2\sigma_x^2}}-\frac{(y-y_0)^2}{2\sigma_y^2}) Km(x,y)=exp(2σx2(xx0)22σy2(yy0)2)用于输出 H m ∈ R 1 × H r × W r H_m\in \mathcal{R}^{1\times \frac{H}{r}\times \frac{W}{r}} HmR1×rH×rW,其中 σ x = α ⋅ w 6 , σ y = α ⋅ h 6 \sigma_x=\frac{\alpha\cdot w}{6},\sigma_y=\frac{\alpha\cdot h}{6} σx=6αw,σy=6αh。最后,对 H m H_m Hm使用 element-wise max 操作,更新 H H H的第 c m c_m cm个通道。 H m H_m Hm由参数 α \alpha α、中心位置 ( x 0 , y 0 ) m (x_0,y_0)_m (x0,y0)m和边框大小 ( h , w ) m (h,w)_m (h,w)m决定。使用 ( ⌊ x r ⌋ , ⌊ y r ⌋ ) (\lfloor\frac{x}{r}\rfloor, \lfloor\frac{y}{r}\rfloor) (⌊rx,ry⌋)使中心点落在某像素点上。网络中,设定 α = 0.54 \alpha=0.54 α=0.54

将高斯分布的峰值点(边框中心像素点)当作正样本,其它像素点当作负样本。

给定预测 H ^ \hat{H} H^和定位目标 H H H
L l o c = − 1 M { ( 1 − H ^ i j c ) α f log ⁡ ( H ^ i j c ) if H i j c = 1 ( 1 − H i j c ) β f H ^ i j c α f log ⁡ ( 1 − H ^ i j c ) , otherwise L_{loc} = -\frac{1}{M}\left\{ \begin{array}{ll} (1-\hat{H}_{ijc})^{\alpha_f}\log(\hat{H}_{ijc})\quad\quad\quad\quad\quad\quad\quad\text{if}\quad H_{ijc}=1 \\ (1-H_{ijc})^{\beta_f}\hat{H}^{\alpha_f}_{ijc}\log (1-\hat{H}_{ijc}),\quad\quad\quad \text{otherwise} \end{array} \right. Lloc=M1{(1H^ijc)αflog(H^ijc)ifHijc=1(1Hijc)βfH^ijcαflog(1H^ijc),otherwise

其中 α f , β f \alpha_f,\beta_f αf,βf是 focal loss 的超参。 M M M表示标注框的个数。 α f = 0.2 , β f = 4 \alpha_f=0.2,\beta_f=4 αf=0.2,βf=4

Size Regression

给定特征图尺度上的第 m m m个标注框,用高斯核输出 S m ∈ R 1 × H r × W r S_m\in \mathcal{R}^{1\times \frac{H}{r}\times \frac{W}{r}} SmR1×rH×rW β \beta β控制高斯核大小。 S m S_m Sm中的非零区域叫做高斯区域 A m A_m Am A m A_m Am总是存在于第 m m m个边框内,因此被叫做 sub-area。

Sub-area 内每个像素都是一个回归样本。给定 A m A_m Am内的像素 ( i , j ) (i,j) (i,j)及输出步长 r r r,回归目标定义为 ( i r , j r ) (ir,jr) (ir,jr)到第 m m m边框四条边的距离,记做一个四维向量 ( w l , h t , w r , h b ) i j m (w_l,h_t,w_r,h_b)^m_{ij} (wl,ht,wr,hb)ijm ( i , j ) (i,j) (i,j)位置的预测框表示为:

x ^ 1 = i r − w ^ l s , y ^ 1 = j r − h ^ t s \hat{x}_1=ir-\hat{w}_ls, \quad\quad \hat{y}_1=jr-\hat{h}_ts x^1=irw^ls,y^1=jrh^ts
x ^ 2 = i r + w ^ r s , y ^ 2 = j r + h ^ b s \hat{x}_2=ir+\hat{w}_rs, \quad\quad \hat{y}_2=jr+\hat{h}_bs x^2=ir+w^rs,y^2=jr+h^bs

s s s是个固定标量,扩大预测结果,从而降低优化难度。实验中 s = 16 s=16 s=16。预测框 ( x ^ 1 , y ^ 1 , x ^ 2 , y ^ 2 ) (\hat{x}_1,\hat{y}_1,\hat{x}_2,\hat{y}_2) (x^1,y^1,x^2,y^2)位于图像尺度,而非特征图尺度。

不存在于任何 sub-area 内的像素,在训练时会被忽略。如果一个像素同时存在于多个 sub-area(模糊样本),则训练 target 设为面积较小的目标。

给定预测结果 S ^ \hat{S} S^和回归目标 S S S,从 S S S中汇集训练目标 S ′ ∈ R N r e g × 4 S'\in \mathcal{R}^{N_{reg}\times 4} SRNreg×4,及其对应的预测结果 S ′ ^ ∈ R N r e g × 4 \hat{S'}\in \mathcal{R}^{N_{reg}\times 4} S^RNreg×4 N r e g N_{reg} Nreg表示回归样本数。如上式所做的,对于这些样本,解码出预测边框,及其对应的标注框。使用 GIoU 计算损失:

L r e g = 1 N r e g ∑ ( i , j ) ∈ A m GIoU ( B ^ i j , B m ) × W i j L_{reg}=\frac{1}{N_{reg}}\sum_{(i,j)\in A_m} \text{GIoU}(\hat{B}_{ij},B_m)\times W_{ij} Lreg=Nreg1(i,j)AmGIoU(B^ij,Bm)×Wij
B ^ i j \hat{B}_{ij} B^ij表示解码后的边框 ( x ^ 1 , y ^ 1 , x ^ 2 , y ^ 2 ) i j (\hat{x}_1,\hat{y}_1,\hat{x}_2,\hat{y}_2)_{ij} (x^1,y^1,x^2,y^2)ij B m = ( x 1 , y 1 , x 2 , y 2 ) m B_m=({x}_1,{y}_1,{x}_2,{y}_2)_m Bm=(x1,y1,x2,y2)m表示图像尺度的第 m m m个标注框。 W i j W_{ij} Wij是样本权重,平衡各样本的损失。

因为目标尺度都不一样,大目标可能产生几千个样本,而小目标只能产生很少。损失归一化后,小目标的损失几乎都没了,这不利于检测小目标。因此,样本权重 W i j W_{ij} Wij发挥着重要作用,平衡损失。假定 ( i , j ) (i,j) (i,j)位于第 m m m个标注框的子区域 A m A_m Am内,

W i j = { log ⁡ ( a m ) × G m ( i , j ) ∑ ( x , y ) ∈ A m G m ( x , y ) if ( i , j ) ∈ A m 0 if ( i , j ) ∉ A m W_{ij} = \left\{ \begin{array}{ll} \log(a_m)\times \frac{G_m(i,j)}{\sum_{(x,y)\in A_m} G_m(x,y)} \quad\quad\quad\quad\text{if}\quad (i,j)\in A_m \\ 0\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\text{if}\quad (i,j)\notin A_m \end{array} \right. Wij={log(am)×(x,y)AmGm(x,y)Gm(i,j)if(i,j)Am0if(i,j)/Am

其中 G m ( i , j ) G_m(i,j) Gm(i,j) ( i , j ) (i,j) (i,j)位置的高斯概率。 a m a_m am是第 m m m个边框的面积。该机制能更好地利用大目标的标注信息,保留小目标的信息。它也能突出目标中心附近的样本,减少模糊和低质量样本。

Total Loss

总损失 L L L包括了定位损失 L l o s L_{los} Llos和回归损失 L r e g L_{reg} Lreg,用两个标量加权。 L = w l o g L l o c + w r e g L r e g L=w_{log}L_{loc}+w_{reg}L_{reg} L=wlogLloc+wregLreg,本文设定 w l o c = 1.0 , w r e g = 5.0 w_{loc}=1.0, w_{reg}=5.0 wloc=1.0,wreg=5.0

Overall Design

TTFNet 的结构如上图所示。主干使用 ResNet 和 DarkNet。主干提取特征后,上采样到原图的 1 / 4 1/4 1/4分辨率,用 Modulated Deform Conv 和上采样层实现,后面跟着 BN 层和 ReLU 层。

然后,上采样特征分别输入进两个 heads。定位 head 对目标中心附近的位置输出高激活值,而回归 head 直接预测这些位置到边框四条边的距离。因为目标中心对应特征图的局部极大值,用 2D 最大池化来抑制非极大值。然后用局部极大值来汇总回归结果。最后得到检测结果。

该方法充分利用了大中目标的标注信息,而小目标的提升有限。为了提升短训练周期中小目标的表现,通过短路连接来引入高分辨率、低层级特征。短路连接引入了主干网络第2、3、4阶段的特征,每个连接用 3 × 3 3\times 3 3×3卷积实现。短路连接的第2、3、4阶段的层数分别设为3、2、1,每层后跟着一个 ReLU,除了最后一个。

相关文章:

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题&#xff1f; 目前的目标检测器很少能做到快速训练、快速推理&#xff0c;并同时保持准确率。直觉上&#xff0c;推理越快的检测器应该训练也很快&#xff0c;但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类&#xff1a;推理时…...

HTTP改HTTPS

tomcat中http协议改https 第一步&#xff0c;配置server.xml <?xml version"1.0" encoding"UTF-8"?> <Server port"8005" shutdown"SHUTDOWN"><Listener className"org.apache.catalina.startup.VersionLogger…...

网络层中一些零碎且易忘的知识点

异构网络&#xff1a;指传输介质、数据编码方式、链路控制协议以及数据单元格式和转发机制不同&#xff0c;异构即物理层和数据链路层均不同RIP、OSPF、BGP分别是哪一层的协议&#xff1a; -RIPOSPFBGP所属层次应用层网络层应用层封装在什么协议中UDPIPTCP 一个主机可以有多个I…...

【RabbitMQ】之高可用集群搭建

目录 一、RabbitMQ 集群原理 1、默认集群原理2、镜像集群原理3、负载均衡方案 二、RabbitMQ 高可用集群搭建 1、RabbitMQ 集群搭建2、配置镜像队列3、HAProxy 环境搭建4、Keepalived 环境搭建 一、RabbitMQ 集群简介 1、默认集群原理 3-1、RabbitMQ 集群简介 单台 RabbitM…...

【node.js】01-fs读写文件内容

目录 一、fs.readFile() 读取文件内容 二、fs.writeFile() 向指定的文件中写入内容 案例&#xff1a;整理txt 需求&#xff1a; 代码&#xff1a; 一、fs.readFile() 读取文件内容 代码&#xff1a; //导入fs模块&#xff0c;从来操作文件 const fs require(fs)// 2.调…...

GitHub仓库如何使用

核心&#xff1a;GitHub仓库如何使用 目录 1.创建仓库&#xff1a; 2.克隆仓库到本地&#xff1a; 3.添加、提交和推送更改&#xff1a; 4.分支管理&#xff1a; 5.拉取请求&#xff08;Pull Requests&#xff09;&#xff1a; 6.合并代码&#xff1a; 7.其他功能&…...

雪花算法,在分布式环境下实现高效的ID生成

其实雪花算法比较简单&#xff0c;可能称不上什么算法就是一种构造UID的方法。 点1&#xff1a;UID是一个long类型的41位时间戳&#xff0c;10位存储机器码&#xff0c;12位存储序列号。 点2&#xff1a;时间戳的单位是毫秒&#xff0c;可以同时链接1024台机器&#xff0c;每台…...

使用css 动画实现,水波纹的效果

每日鸡汤&#xff1a;每个你想要学习的瞬间都是未来的你向自己求救 需求&#xff0c;实现水波纹动画效果&#xff0c;要求中心一个圆点&#xff0c;然后有3个圈&#xff0c;一圈一圈的向里面缩小。 说实话我第一个想到了给3个圈设置不同的宽高&#xff0c;然后设置动画0-100%&a…...

Unity光照相关知识和实践 (烘焙光照,环境光设置,全局光照)

简介 本文将会通过一个简单的场景搭建&#xff0c;介绍如何使用烘焙光照以及相关的注意事项。另外还介绍了Unity内全局光照&#xff08;GI&#xff09;的知识和GI实际在游戏内的表现效果。 Unity关于光照相关的参考文档地址&#xff1a;https://docs.unity.cn/cn/current/Man…...

【设计模式——学习笔记】23种设计模式——适配器模式Adapter(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 介绍生活中的案例基础介绍工作原理分类应用场景 案例类适配器模式例1介绍类图代码实现优缺点分析 例2类图代码实现 对象适配器模式&#xff08;常用方式&#xff09;例1介绍类图代码实现优缺点分析 例2代码实现 接口适配器模式介绍类图代码实现 登场角色类图类适配器模…...

Android Unit Test

一、测试基础知识 1.1 测试级别 测试金字塔&#xff08;如图 2 所示&#xff09;说明了应用应如何包含三类测试&#xff08;即小型、中型和大型测试&#xff09;&#xff1a; 小型测试是指单元测试&#xff0c;用于验证应用的行为&#xff0c;一次验证一个类。 中型测试是指…...

docker更新jenkins

下载文件 1、jenkins提示下载 2、官网下载jenkins官网 文件放服务器内 通过工具把jenkins.war放进服务器例如tmp 文件复制到docker的jenkins容器 docker cp 路径文件 容器id:/{后面不接内容为根路径} docker cp /tmp/jenkins.war 53dc1c71058a:/进入容器内 docker exec …...

一种新的基于区域的在线活动轮廓模型研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

【Docker】基于Dockerfile搭建LNMP架构

一、项目环境 公司在实际的生产环境中,需要使用Docker 技术在一台主机上创建LNMP服务并运行Wordpress网站平台。然后对此服务进行相关的性能调优和管理工作。 1. 环境配置 主机操作系统IP地址主要软件DockerCentOS 7.3 x86_64192.168.145.15Docker 19.03容器ip地址规划 ngin…...

爬虫003_pycharm的安装以及使用_以及python脚本模版设置---python工作笔记021

这里我们用ide,pycharm来编码,看一看如何下载 这里我们下载这个社区办,这个是免费的,个人版是收费的 然后勾选以后 安装以后我们来创建一个项目 这里可以选择python的解释器,选择右边的... 这里我们找到我们自己安装的python解释器...

远程xml读取解析,将image url下载到本地,延时队列定时删除文件,图片访问路径保存在数据库中

远程xml部分内容 <imagelist name"FY4A AGRI IMG REGI MTCC GLL" tag"FY4A AGRI IMG REGI MTCC GLL"><image time"2023-07-25 22:30 (UTC)" desc"FY4A AGRI IMG REGI MTCC GLL" url"http://img.nsmc.org.cn/PORTAL/FY4…...

firefox笔记-Centos7离线安装firefox

目前&#xff08;2023-03-22 16:41:35&#xff09;Centos7自带的firefox已经很新了是2020年的。主要原因是有个web项目&#xff0c;用2020年的firefox打不开。 发到互联网上是2023-07-24。 报错是js有问题&#xff0c;估计是搞前端的只做了chrome适应&#xff0c;没做firefox…...

Flutter:滑动面板

前言 无意中发现了这个库&#xff0c;发现现在很多app中都有类似的功能。以手机b站为例&#xff0c;当你在看视频时&#xff0c;点击评论&#xff0c;视频会向上偏移&#xff0c;下方划出评论界面。 sliding_up_panel SlidingUpPanel是一个Flutter插件&#xff0c;用于创建滑…...

RocketMQ概论

目录 前言&#xff1a; 1.概述 2.下载安装、集群搭建 3.消息模型 4.如何保证吞吐量 4.1.消息存储 4.1.1顺序读写 4.1.2.异步刷盘 4.1.3.零拷贝 4.2.网络传输 前言&#xff1a; RocketMQ的代码示例在安装目录下有全套详细demo&#xff0c;所以本文不侧重于讲API这种死…...

任务的创建与删除

Q: 什么是任务&#xff1f; A: 任务可以理解为进程/线程&#xff0c;创建一个任务&#xff0c;就会在内存开辟一个空间。 比如&#xff1a; 玩游戏&#xff0c;打篮球&#xff0c;开车&#xff0c;都可以视为任务。 Windows 系统中的 MarkText 、谷歌浏览器、记事本&#xff0…...

致敬图灵!HashData拥抱数据智能新时代!

图1&#xff1a;2023ACM中国图灵大会现场 生于1912年的艾伦图灵被称为“计算机科学之父”、“人工智能之父”。1966年&#xff0c;国际计算机协会&#xff08;ACM&#xff09;为了纪念这位卓越的科学家&#xff0c;设立了以其名字命名的ACM图灵奖&#xff0c;以表彰在计算机领…...

AD21原理图的高级应用(二)层次原理图设计

&#xff08;二&#xff09;层次原理图设计 1.层次原理图概述2.层次化原理图的应用2.1 自上而下的层次化原理图2.2 自下而上的层次化原理图 3.生成层次设计表 对于大规模的电路系统,需要将其按功能分解为若干个电路模块,用户可以单独绘制好各个功能模块,再将它们组合起来继续处…...

ROS中使用RealSense-D435

文章目录 D435简介RealSense的SDK2.0安装方法1&#xff1a;直接利用安装源安装注册服务器公匙将服务器添加到存储库列表安装库 方法2&#xff1a;利用源码安装GitHub下载librealsense安装编译依赖运行脚本cmake编译 软件显示 ROS接口安装启动节点查看话题rviz显示点云 Python接…...

nlp系列(6)文本实体识别(Bi-LSTM+CRF)pytorch

模型介绍 LSTM&#xff1a;长短期记忆网络&#xff08;Long-short-term-memory&#xff09;,能够记住长句子的前后信息&#xff0c;解决了RNN的问题&#xff08;时间间隔较大时&#xff0c;网络对前面的信息会遗忘&#xff0c;从而出现梯度消失问题&#xff0c;会形成长期依赖…...

zookeeper-3.7.1集群

1.下载&解压安装包apache-zookeeper-3.7.1-bin.tar.gz 解压到/app/ &改名zookeeper-3.7.1 [rootnode1 app]# tar -zxvf apache-zookeeper-3.7.1-bin.tar.gz -C /app/ [rootnode1 app]# mv apache-zookeeper-3.7.1-bin zookeeper-3.7.1 ---- 删除docs [rootnode1…...

ubuntu上安装firefox geckodriver 实现爬虫

缘由&#xff1a;当时在windows 上运行chrom 的时候 发现要找到 浏览器和 webdirver 相匹配的 版本比较麻烦&#xff0c;当时搞了大半天才找到并安装好。 这次在ubuntu上尝试用firefox 实现爬虫 文章分为三个部分&#xff1a; 环境搭建浏览器弹窗输入用户名&#xff0c;密码的…...

【Matlab】基于长短期记忆网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于长短期记忆网络的时间序列预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.分块代码6.完整代码7.运行结果1.模型原理 "基于长短期记忆网络(Long Short-Term Memory, LSTM)的时间序列预测"是一种使用LSTM神经网络来预测时间…...

[NLP]LLM高效微调(PEFT)--LoRA

LoRA 背景 神经网络包含很多全连接层&#xff0c;其借助于矩阵乘法得以实现&#xff0c;然而&#xff0c;很多全连接层的权重矩阵都是满秩的。当针对特定任务进行微调后&#xff0c;模型中权重矩阵其实具有很低的本征秩&#xff08;intrinsic rank&#xff09;&#xff0c;因…...

vue3 vant上传图片

在 Vue 3 中使用 Vant 组件库进行图片上传&#xff0c;您可以使用 Vant 的 ImageUploader 组件。ImageUploader 是 Vant 提供的图片上传组件&#xff0c;可以方便地实现图片上传功能。 以下是一个简单的示例&#xff0c;演示如何在 Vue 3 中使用 Vant 的 ImageUploader 组件进行…...

深入理解linux内核--内存管理

RAM的某些部分永久分配给内核&#xff0c; 来存放内核代码及静态内核数据结构。 RAM的其余部分称为动态内存&#xff0c; 这不仅是进程所需的宝贵资源&#xff0c; 也是内核本身所需的宝贵资源。页框管理 Intel的Pentinum处理器可采用两种不同的页框大小&#xff1a; 4KB&…...