回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
目录
- 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果
基本介绍
1.MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测;
2.运行环境为Matlab2021b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,MainTCN_BiLSTMNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出RMSE、MAE、MAPE多指标评价。
模型描述
由于TCN 具有扩张因果卷积结构,拥有突出的特征提取能力,因此可对原始特征进行融合获得高维的抽象特征,加强了对特征信息的挖掘。而
BiLSTM 网络具有强大的时序预测能力,将TCN 和BiLSTM网络结合,通过TCN 特征提取后输入至BiLSTM 网络,提高了BiLSTM网络记忆单元的处理效率,使得预测模型更有效地学习时间序列的复杂交互关系。因此,本文搭建了TCN-BiLSTM 预测模型。
TCN-BiLSTM是一种将时间卷积神经网络(TCN)和双向长短期记忆神经网络(BiLSTM)结合在一起的神经网络模型。TCN是一种能够处理序列数据的卷积神经网络,它能够捕捉到序列中的长期依赖关系。BiLSTM则是一种具有记忆单元的递归神经网络,它能够处理序列数据中的短期和长期依赖。
TCN-BiLSTM模型的输入可以是多个序列,每个序列可以是不同的特征或变量。例如,如果我们想预测某个城市未来一周的平均温度,我们可以将过去一段时间内的温度、湿度、气压等多个变量作为输入序列。模型的输出是一个值,即未来某个时间点的平均温度。
在TCN-BiLSTM中,时间卷积层用于捕捉序列中的长期依赖关系,BiLSTM层用于处理序列中的短期和长期依赖。多个输入序列被合并成一个张量,然后送入TCN-BiLSTM网络进行训练。在训练过程中,模型优化目标是最小化预测输出与真实值之间的差距。
TCN-BiLSTM模型在时间序列预测和回归问题上表现良好,特别是对于长期依赖的序列数据。它可以被用于许多应用场景,例如股票价格预测、交通流量预测等。
程序设计
- 完整源码和数据获取方式1:私信博主回复MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测;
- 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test ); %% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%% 相关指标计算% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])% MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-BiLSTM时间卷积…...

Linux 系列 常见 快捷键总结
强制停止 Ctrl C 退出程序、退出登录 Ctrl D 等价 exit 查看历史命令 history !命令前缀,自动匹配上一个命令 (历史命令中:从最新——》最老 搜索) ctrl r 输入内去历史命令中检索 # 回车键可以直接执行 ctrl a 跳到命令开头 …...

OA系统构建排座
目录 一.排座的介绍,作用 1.排座介绍 A.前端实现 B.数据库实现 C.后端实现 2.排座作用 A.座位预订 B.座位安排 C. 实时座位状态显示 二.利用Layui实现排座 1.基础版(通过htmlcssjs实现) A.基础版源码(html): 2.进阶版 …...

微信小程序 居中、居右、居底和横向、纵向布局,文字在图片中间,网格布局
微信小程序居中、居右、横纵布局 1、水平垂直居中(相对父类控件)方式一:水平垂直居中 父类控件: display: flex;align-items: center;//子控件垂直居中justify-content: center;//子控件水平居中width: 100%;height: 400px //注意…...
【C++】总结2
文章目录 1.final和override关键字2.extern "C"的用法3.野指针和垂悬指针(悬空指针)4.指针指向的内存被释放是什么意思5.C和C的类型安全6.C中的重载、重写(覆盖)和隐藏的区别 1.final和override关键字 final和override是C11引入的关键字&…...

vue2项目中使用svg图标
在开发项目的时候经常会用到svg矢量图,而且我们使用SVG以后,页面上加载的不再是图片资源, 这对页面性能来说是个很大的提升,而且我们SVG文件比img要小的很多,放在项目中几乎不占用资源。 1、安装SVG依赖插件并配置加载器和路径 npm instal…...

阿里云盘自动每日签到无需部署无需服务器(仅限学习交流使用)
一、前言 阿里云盘自动每日签到,无需部署,无需服务器 执行思路:使用金山文档的每日定时任务,执行阿里云盘签到接口。 二、效果展示: 三、步骤: 1、进入金山文档网页版 金山文档官网:https:…...

Blazor前后端框架Known-V1.2.7
V1.2.7 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行。 Gitee: https://gitee.com/known/KnownGithub:https://github.com/known/Known 概述 基于C#和Blazor…...

工业边缘计算为什么?
在工厂环境中使用边缘计算并不新鲜。可编程逻辑控制器(PLC)、微控制器、服务器和PC进行本地数据处理,甚至是微型数据中心都是边缘技术,已经在工厂系统中存在了几十年。在车间里看到的看板系统,打卡系统,历史…...

Training-Time-Friendly Network for Real-Time Object Detection 论文学习
1. 解决了什么问题? 目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时…...
HTTP改HTTPS
tomcat中http协议改https 第一步,配置server.xml <?xml version"1.0" encoding"UTF-8"?> <Server port"8005" shutdown"SHUTDOWN"><Listener className"org.apache.catalina.startup.VersionLogger…...

网络层中一些零碎且易忘的知识点
异构网络:指传输介质、数据编码方式、链路控制协议以及数据单元格式和转发机制不同,异构即物理层和数据链路层均不同RIP、OSPF、BGP分别是哪一层的协议: -RIPOSPFBGP所属层次应用层网络层应用层封装在什么协议中UDPIPTCP 一个主机可以有多个I…...

【RabbitMQ】之高可用集群搭建
目录 一、RabbitMQ 集群原理 1、默认集群原理2、镜像集群原理3、负载均衡方案 二、RabbitMQ 高可用集群搭建 1、RabbitMQ 集群搭建2、配置镜像队列3、HAProxy 环境搭建4、Keepalived 环境搭建 一、RabbitMQ 集群简介 1、默认集群原理 3-1、RabbitMQ 集群简介 单台 RabbitM…...

【node.js】01-fs读写文件内容
目录 一、fs.readFile() 读取文件内容 二、fs.writeFile() 向指定的文件中写入内容 案例:整理txt 需求: 代码: 一、fs.readFile() 读取文件内容 代码: //导入fs模块,从来操作文件 const fs require(fs)// 2.调…...

GitHub仓库如何使用
核心:GitHub仓库如何使用 目录 1.创建仓库: 2.克隆仓库到本地: 3.添加、提交和推送更改: 4.分支管理: 5.拉取请求(Pull Requests): 6.合并代码: 7.其他功能&…...
雪花算法,在分布式环境下实现高效的ID生成
其实雪花算法比较简单,可能称不上什么算法就是一种构造UID的方法。 点1:UID是一个long类型的41位时间戳,10位存储机器码,12位存储序列号。 点2:时间戳的单位是毫秒,可以同时链接1024台机器,每台…...
使用css 动画实现,水波纹的效果
每日鸡汤:每个你想要学习的瞬间都是未来的你向自己求救 需求,实现水波纹动画效果,要求中心一个圆点,然后有3个圈,一圈一圈的向里面缩小。 说实话我第一个想到了给3个圈设置不同的宽高,然后设置动画0-100%&a…...

Unity光照相关知识和实践 (烘焙光照,环境光设置,全局光照)
简介 本文将会通过一个简单的场景搭建,介绍如何使用烘焙光照以及相关的注意事项。另外还介绍了Unity内全局光照(GI)的知识和GI实际在游戏内的表现效果。 Unity关于光照相关的参考文档地址:https://docs.unity.cn/cn/current/Man…...

【设计模式——学习笔记】23种设计模式——适配器模式Adapter(原理讲解+应用场景介绍+案例介绍+Java代码实现)
文章目录 介绍生活中的案例基础介绍工作原理分类应用场景 案例类适配器模式例1介绍类图代码实现优缺点分析 例2类图代码实现 对象适配器模式(常用方式)例1介绍类图代码实现优缺点分析 例2代码实现 接口适配器模式介绍类图代码实现 登场角色类图类适配器模…...
Android Unit Test
一、测试基础知识 1.1 测试级别 测试金字塔(如图 2 所示)说明了应用应如何包含三类测试(即小型、中型和大型测试): 小型测试是指单元测试,用于验证应用的行为,一次验证一个类。 中型测试是指…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...