当前位置: 首页 > news >正文

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

2
3
4
5

6
7

基本介绍

1.MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测;
2.运行环境为Matlab2021b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,MainTCN_BiLSTMNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出RMSE、MAE、MAPE多指标评价。

模型描述

由于TCN 具有扩张因果卷积结构,拥有突出的特征提取能力,因此可对原始特征进行融合获得高维的抽象特征,加强了对特征信息的挖掘。而
BiLSTM 网络具有强大的时序预测能力,将TCN 和BiLSTM网络结合,通过TCN 特征提取后输入至BiLSTM 网络,提高了BiLSTM网络记忆单元的处理效率,使得预测模型更有效地学习时间序列的复杂交互关系。因此,本文搭建了TCN-BiLSTM 预测模型。

TCN-BiLSTM是一种将时间卷积神经网络(TCN)和双向长短期记忆神经网络(BiLSTM)结合在一起的神经网络模型。TCN是一种能够处理序列数据的卷积神经网络,它能够捕捉到序列中的长期依赖关系。BiLSTM则是一种具有记忆单元的递归神经网络,它能够处理序列数据中的短期和长期依赖。
TCN-BiLSTM模型的输入可以是多个序列,每个序列可以是不同的特征或变量。例如,如果我们想预测某个城市未来一周的平均温度,我们可以将过去一段时间内的温度、湿度、气压等多个变量作为输入序列。模型的输出是一个值,即未来某个时间点的平均温度。
在TCN-BiLSTM中,时间卷积层用于捕捉序列中的长期依赖关系,BiLSTM层用于处理序列中的短期和长期依赖。多个输入序列被合并成一个张量,然后送入TCN-BiLSTM网络进行训练。在训练过程中,模型优化目标是最小化预测输出与真实值之间的差距。
TCN-BiLSTM模型在时间序列预测和回归问题上表现良好,特别是对于长期依赖的序列数据。它可以被用于许多应用场景,例如股票价格预测、交通流量预测等。

程序设计

  • 完整源码和数据获取方式1:私信博主回复MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-BiLSTM时间卷积…...

Linux 系列 常见 快捷键总结

强制停止 Ctrl C 退出程序、退出登录 Ctrl D 等价 exit 查看历史命令 history !命令前缀,自动匹配上一个命令 (历史命令中:从最新——》最老 搜索) ctrl r 输入内去历史命令中检索 # 回车键可以直接执行 ctrl a 跳到命令开头 …...

OA系统构建排座

目录 一.排座的介绍,作用 1.排座介绍 A.前端实现 B.数据库实现 C.后端实现 2.排座作用 A.座位预订 B.座位安排 C. 实时座位状态显示 二.利用Layui实现排座 1.基础版(通过htmlcssjs实现) A.基础版源码(html): 2.进阶版 …...

微信小程序 居中、居右、居底和横向、纵向布局,文字在图片中间,网格布局

微信小程序居中、居右、横纵布局 1、水平垂直居中(相对父类控件)方式一:水平垂直居中 父类控件: display: flex;align-items: center;//子控件垂直居中justify-content: center;//子控件水平居中width: 100%;height: 400px //注意…...

【C++】总结2

文章目录 1.final和override关键字2.extern "C"的用法3.野指针和垂悬指针(悬空指针)4.指针指向的内存被释放是什么意思5.C和C的类型安全6.C中的重载、重写(覆盖)和隐藏的区别 1.final和override关键字 final和override是C11引入的关键字&…...

vue2项目中使用svg图标

在开发项目的时候经常会用到svg矢量图,而且我们使用SVG以后,页面上加载的不再是图片资源, 这对页面性能来说是个很大的提升,而且我们SVG文件比img要小的很多,放在项目中几乎不占用资源。 1、安装SVG依赖插件并配置加载器和路径 npm instal…...

阿里云盘自动每日签到无需部署无需服务器(仅限学习交流使用)

一、前言 阿里云盘自动每日签到,无需部署,无需服务器 执行思路:使用金山文档的每日定时任务,执行阿里云盘签到接口。 二、效果展示: 三、步骤: 1、进入金山文档网页版 金山文档官网:https:…...

Blazor前后端框架Known-V1.2.7

V1.2.7 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行。 Gitee: https://gitee.com/known/KnownGithub:https://github.com/known/Known 概述 基于C#和Blazor…...

工业边缘计算为什么?

在工厂环境中使用边缘计算并不新鲜。可编程逻辑控制器(PLC)、微控制器、服务器和PC进行本地数据处理,甚至是微型数据中心都是边缘技术,已经在工厂系统中存在了几十年。在车间里看到的看板系统,打卡系统,历史…...

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题? 目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时…...

HTTP改HTTPS

tomcat中http协议改https 第一步&#xff0c;配置server.xml <?xml version"1.0" encoding"UTF-8"?> <Server port"8005" shutdown"SHUTDOWN"><Listener className"org.apache.catalina.startup.VersionLogger…...

网络层中一些零碎且易忘的知识点

异构网络&#xff1a;指传输介质、数据编码方式、链路控制协议以及数据单元格式和转发机制不同&#xff0c;异构即物理层和数据链路层均不同RIP、OSPF、BGP分别是哪一层的协议&#xff1a; -RIPOSPFBGP所属层次应用层网络层应用层封装在什么协议中UDPIPTCP 一个主机可以有多个I…...

【RabbitMQ】之高可用集群搭建

目录 一、RabbitMQ 集群原理 1、默认集群原理2、镜像集群原理3、负载均衡方案 二、RabbitMQ 高可用集群搭建 1、RabbitMQ 集群搭建2、配置镜像队列3、HAProxy 环境搭建4、Keepalived 环境搭建 一、RabbitMQ 集群简介 1、默认集群原理 3-1、RabbitMQ 集群简介 单台 RabbitM…...

【node.js】01-fs读写文件内容

目录 一、fs.readFile() 读取文件内容 二、fs.writeFile() 向指定的文件中写入内容 案例&#xff1a;整理txt 需求&#xff1a; 代码&#xff1a; 一、fs.readFile() 读取文件内容 代码&#xff1a; //导入fs模块&#xff0c;从来操作文件 const fs require(fs)// 2.调…...

GitHub仓库如何使用

核心&#xff1a;GitHub仓库如何使用 目录 1.创建仓库&#xff1a; 2.克隆仓库到本地&#xff1a; 3.添加、提交和推送更改&#xff1a; 4.分支管理&#xff1a; 5.拉取请求&#xff08;Pull Requests&#xff09;&#xff1a; 6.合并代码&#xff1a; 7.其他功能&…...

雪花算法,在分布式环境下实现高效的ID生成

其实雪花算法比较简单&#xff0c;可能称不上什么算法就是一种构造UID的方法。 点1&#xff1a;UID是一个long类型的41位时间戳&#xff0c;10位存储机器码&#xff0c;12位存储序列号。 点2&#xff1a;时间戳的单位是毫秒&#xff0c;可以同时链接1024台机器&#xff0c;每台…...

使用css 动画实现,水波纹的效果

每日鸡汤&#xff1a;每个你想要学习的瞬间都是未来的你向自己求救 需求&#xff0c;实现水波纹动画效果&#xff0c;要求中心一个圆点&#xff0c;然后有3个圈&#xff0c;一圈一圈的向里面缩小。 说实话我第一个想到了给3个圈设置不同的宽高&#xff0c;然后设置动画0-100%&a…...

Unity光照相关知识和实践 (烘焙光照,环境光设置,全局光照)

简介 本文将会通过一个简单的场景搭建&#xff0c;介绍如何使用烘焙光照以及相关的注意事项。另外还介绍了Unity内全局光照&#xff08;GI&#xff09;的知识和GI实际在游戏内的表现效果。 Unity关于光照相关的参考文档地址&#xff1a;https://docs.unity.cn/cn/current/Man…...

【设计模式——学习笔记】23种设计模式——适配器模式Adapter(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 介绍生活中的案例基础介绍工作原理分类应用场景 案例类适配器模式例1介绍类图代码实现优缺点分析 例2类图代码实现 对象适配器模式&#xff08;常用方式&#xff09;例1介绍类图代码实现优缺点分析 例2代码实现 接口适配器模式介绍类图代码实现 登场角色类图类适配器模…...

Android Unit Test

一、测试基础知识 1.1 测试级别 测试金字塔&#xff08;如图 2 所示&#xff09;说明了应用应如何包含三类测试&#xff08;即小型、中型和大型测试&#xff09;&#xff1a; 小型测试是指单元测试&#xff0c;用于验证应用的行为&#xff0c;一次验证一个类。 中型测试是指…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

结构化文件管理实战:实现目录自动创建与归类

手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题&#xff0c;进而引发后续程序异常。使用工具进行标准化操作&#xff0c;能有效降低出错概率。 需要快速整理大量文件的技术用户而言&#xff0c;这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB&#xff0c;…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...