当前位置: 首页 > news >正文

基于飞桨paddle波士顿房价预测练习模型测试代码

基于飞桨paddle波士顿房价预测练习模型测试代码
导入基础库

#paddle:飞桨的主库,paddle 根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework、paddle.device目录下的所有API;
import paddle
#Linear:神经网络的全连接层函数,包含所有输入权重相加的基本神经元结构。在房价预测任务中,使用只有一层的神经网络(全连接层)实现线性回归模型。
from paddle.nn import Linear
#paddle.nn:组网相关的API,包括 Linear、卷积 Conv2D、循环神经网络LSTM、损失函数CrossEntropyLoss、激活函数ReLU等;
#paddle.nn.functional:与paddle.nn一样,包含组网相关的API,如:Linear、激活函数ReLU等,二者包含的同名模块功能相同,运行性能也基本一致。 
#差别在于paddle.nn目录下的模块均是类,每个类自带模块参数;paddle.nn.functional目录下的模块均是函数,需要手动传入函数计算所需要的参数。
#在实际使用时,卷积、全连接层等本身具有可学习的参数,建议使用paddle.nn;而激活函数、池化等操作没有可学习参数,可以考虑使用paddle.nn.functional。
import paddle.nn.functional as F
#NumPy(Numerical Python的简称)是高性能科学计算和数据分析的基础包
import numpy as np
#os 操作系统库
import os
#random 椭机数库
import random

#数据处理

#数据处理
#====================================================
def load_data():# 从文件导入数据datafile = 'housing.data'data = np.fromfile(datafile, sep=' ', dtype=np.float32)# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 将原数据集拆分成训练集和测试集# 这里使用80%的数据做训练,20%的数据做测试# 测试集和训练集必须是没有交集的ratio = 0.8offset = int(data.shape[0] * ratio)    #404*0.8=323=offsettraining_data = data[:offset]      #获取-训练集# 计算train数据集的最大值,最小值maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)# 记录数据的归一化参数,在预测时对数据做归一化global max_valuesglobal min_valuesmax_values = maximumsmin_values = minimums# 对数据进行归一化处理for i in range(feature_num):data[:, i] = (data[:, i] - min_values[i]) / (maximums[i] - minimums[i])# 训练集和测试集的划分比例training_data = data[:offset]test_data = data[offset:]return training_data, test_data
#==================================================== 
# 验证数据集读取程序的正确性
training_data, test_data = load_data()
print(training_data.shape)   #=(404, 14)
print(training_data[1,:])   

#模型设计

#模型设计
#==================================================== 
class Regressor(paddle.nn.Layer):# self代表类的实例自身def __init__(self):# 初始化父类中的一些参数super(Regressor, self).__init__()# 定义一层全连接层,输入维度是13,输出维度是1self.fc = Linear(in_features=13, out_features=1)# 网络的前向计算def forward(self, inputs):x = self.fc(inputs)return x
#==================================================== 

#训练配置

#训练配置 
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())    
#模型实例有两种状态:训练状态.train()和预测状态.eval()。
# 训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算,
# 为模型指定运行状态,  **# 训练过程**
#训练过程采用二层循环嵌套方式: 
#内层循环: 负责整个数据集的一次遍历,采用分批次方式(batch)。
#外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置。
#====================================================
EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小# 定义外层循环
for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]# 定义内层循环for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)# 将numpy数据转为飞桨动态图tensor的格式house_features = paddle.to_tensor(x)prices = paddle.to_tensor(y)# 前向计算predicts = model(house_features)# 计算损失loss = F.square_error_cost(predicts, label=prices)avg_loss = paddle.mean(loss)if iter_id%20==0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))# 反向传播,计算每层参数的梯度值avg_loss.backward()# 更新参数,根据设置好的学习率迭代一步opt.step()# 清空梯度变量,以备下一轮计算opt.clear_grad()
#==================================================== 

# 保存并测试模型
# 保存模型

# 保存模型    
# 使用paddle.save API将模型当前的参数数据 model.state_dict() 保存到文件中,
# 用于模型预测或校验的程序调用。 
# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中") 

#测试模型

#测试模型
#====================================================
def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data =  one_data.reshape([1,-1])return one_data, label
#==================================================== 
# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
predict = model(one_data)# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + min_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + min_values[-1]print("预测结果Inference result is {}, 原相应值the corresponding label is {}".format(predict.numpy(), label)) 
#==================================================== 

执行结果如下所示:

PS E:\project\python> & D:/Python39/python.exe e:/project/python/BSD_House.py
(404, 14)
[2.35922547e-04 0.00000000e+00 2.62405723e-01 0.00000000e+001.72839552e-01 5.47997713e-01 7.82698274e-01 3.48961979e-014.34782617e-02 1.14822544e-01 5.53191364e-01 1.00000000e+002.04470202e-01 3.68888885e-01]
epoch: 0, iter: 0, loss is: [1.0095187]
epoch: 0, iter: 20, loss is: [0.05577583]
epoch: 0, iter: 40, loss is: [0.10179052]
epoch: 1, iter: 0, loss is: [0.05334579]
epoch: 1, iter: 20, loss is: [0.05690664]
epoch: 1, iter: 40, loss is: [0.00672564]
epoch: 2, iter: 0, loss is: [0.07125398]
epoch: 2, iter: 20, loss is: [0.07457525]
epoch: 2, iter: 40, loss is: [0.06540678]
epoch: 3, iter: 0, loss is: [0.06383592]
epoch: 8, iter: 40, loss is: [0.02903528]
epoch: 9, iter: 0, loss is: [0.05061438]
epoch: 9, iter: 20, loss is: [0.03942648]
epoch: 9, iter: 40, loss is: [0.02119895]
模型保存成功,模型参数保存在LR_model.pdparams中
预测结果Inference result is [[18.37352]], 原相应值the corresponding label is 19.700000762939453
PS E:\project\python>

模型保存成功,模型参数保存在LR_model.pdparams中
预测结果
预测结果Inference result is [[18.37352]], 原相应值the corresponding label is 19.700000762939453

相关文章:

基于飞桨paddle波士顿房价预测练习模型测试代码

基于飞桨paddle波士顿房价预测练习模型测试代码 导入基础库 #paddle:飞桨的主库,paddle 根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework、paddle.device目录下的所有API; import paddle #Lin…...

只会“点点点”,凭什么让开发看的起你?

众所周知,如今无论是大厂还是中小厂,自动化测试基本是标配了,毕竟像双 11、618 这种活动中庞大繁杂的系统,以及多端发布、多版本、机型发布等需求,但只会“写一些自动化脚本”很难胜任。这一点在招聘要求中就能看出来。…...

35.图片幻灯片

图片幻灯片 html部分 <div class"carousel"><div class"image-container"><img src"./static/20180529205331_yhGyf.jpeg" alt"" srcset""><img src"./static/20190214214253_hsjqw.webp"…...

CentOS7系统Nvidia Docker容器基于TensorFlow2.12测试GPU

CentOS7系统Nvidia Docker容器基于TensorFlow1.15测试GPU 参考我的另一篇博客 1. 安装NVIDIA-Docker的Tensorflow2.12.0版本 1. 版本依赖对应关系&#xff1a;从源代码构建 | TensorFlow GPU 版本Python 版本编译器构建工具cuDNNCUDAtensorflow-2.6.03.6-3.9GCC 7.3.1Ba…...

Go 下载安装教程

1. 下载地址&#xff1a;The Go Programming Language (google.cn) 2. 下载安装包 3. 安装 &#xff08;1&#xff09;下一步 &#xff08;2&#xff09;同意 &#xff08;3&#xff09;修改安装路径&#xff0c;如果不修改&#xff0c;直接下一步 更改后&#xff0c;点击下一…...

InnoDB数据存储结构

一. InnoDB的数据存储结构&#xff1a;页 索引是在存储引擎中实现的&#xff0c;MySQL服务器上的存储引擎负责对表中数据的读取和写入工作。不同存储引擎中存放的格式一般不同的&#xff0c;甚至有的存储引擎比如Memory都不用磁盘来存储数据&#xff0c;这里讲讲InooDB存储引擎…...

基于ts的浏览器缓存工具封装(含源码)

cache.ts缓存工具 浏览器缓存工具封装实现使用方法示例代码 浏览器缓存工具封装 在前端开发中&#xff0c;经常会遇到需要缓存数据的情况&#xff0c;例如保存用户的登录状态、缓存部分页面数据等 但有时候需要缓存一些复杂的对象&#xff0c;例如用户信息对象、设置配置等。…...

GIT涵盖工作中用的相关指令

git安装一直默认点击下去&#xff0c;安装完成&#xff0c;右键会看见gitBash git --version 查看git安装的版本 使用git前配置git git config --global user.name 提交人姓名 git config --global user.email 提交人邮箱 git config --list 查看git配置信息 使用git中配置…...

【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码&#xff08;一&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存&#xff08;二&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型部署&#xff08;三&#xff09; 【如何训…...

[JAVAee]文件操作-IO

本文章讲述了通过java对文件进行IO操作 IO:input/output,输入/输出. 建议配合文章末尾实例食用 目录 文件 文件的管理 文件的路径 文件的分类 文件系统的操作 File类的构造方法 File的常用方法 文件内容的读写 FileInputStream读取文件 构造方法 常用方法 Scan…...

【数据集】3小时尺度降水数据集-MSWEPV2

1 MSWEP V2 precipitation product 官网-MSWEP V2降水产品 参考...

Springboot之把外部依赖包纳入Spring容器管理的两种方式

前言 在Spring boot项目中&#xff0c;凡是标记有Component、Controller、Service、Configuration、Bean等注解的类&#xff0c;Spring boot都会在容器启动的时候&#xff0c;自动创建bean并纳入到Spring容器中进行管理&#xff0c;这样就可以使用Autowired等注解&#xff0c;…...

更安全,更省心丨DolphinDB 数据库权限管理系统使用指南

在数据库产品使用过程中&#xff0c;为保证数据不被窃取、不遭破坏&#xff0c;我们需要通过用户权限来限制用户对数据库、数据表、视图等功能的操作范围&#xff0c;以保证数据库安全性。为此&#xff0c;DolphinDB 提供了具备以下主要功能的权限管理系统&#xff1a; 提供用户…...

WPS本地镜像化在线文档操作以及样例

一个客户项目有引进在线文档操作需求&#xff0c;让我这边做一个demo调研下&#xff0c;给我的对接文档里有相关方法的说明&#xff0c;照着对接即可。但在真正对接过程中还是踩过不少坑&#xff0c;这儿对之前的对接工作做个记录。 按照习惯先来一个效果&#xff1a; Demo下载…...

STM32 Flash学习(一)

STM32 FLASH简介 不同型号的STM32&#xff0c;其Flash容量也不同。 MiniSTM32开发板选择的STM32F103RCT6的FLASH容量为256K字节&#xff0c;属于大容量产品。 STM32的闪存模块由&#xff1a;主存储器、信息块和闪存存储器接口寄存器等3部分组成。 主存储器&#xff0c;该部分…...

Spring中IOC容器常用的接口和具体的实现类

在Spring框架没有出现之前&#xff0c;在Java语言中&#xff0c;程序员们创建对象一般都是通过关键字new来完成&#xff0c;那时流行一句话“万物即可new&#xff0c;包括女朋友”。但是这种创建对象的方式维护成本很高&#xff0c;而且对于类之间的相互关联关系很不友好。鉴于…...

【MySQL】索引特性

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《零基础入门MySQL》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录 &#x1f449;没…...

【深度学习笔记】动量梯度下降法

本专栏是网易云课堂人工智能课程《神经网络与深度学习》的学习笔记&#xff0c;视频由网易云课堂与 deeplearning.ai 联合出品&#xff0c;主讲人是吴恩达 Andrew Ng 教授。感兴趣的网友可以观看网易云课堂的视频进行深入学习&#xff0c;视频的链接如下&#xff1a; 神经网络和…...

《TCP IP网络编程》第十二章

第 12 章 I/O 复用 12.1 基于 I/O 复用的服务器端 多进程服务端的缺点和解决方法&#xff1a; 为了构建并发服务器&#xff0c;只要有客户端连接请求就会创建新进程。这的确是实际操作中采用的一种方案&#xff0c;但并非十全十美&#xff0c;因为创建进程要付出很大的代价。…...

基于CNN卷积神经网络的调制信号识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1. 卷积神经网络&#xff08;CNN&#xff09; 2. 调制信号识别 3.实现过程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022A 3.部分核心程序 % 构建调制类型…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...