当前位置: 首页 > news >正文

数值分析第六章节 用Python实现解线性方程组的迭代法

参考书籍:数值分析 第五版 李庆杨 王能超 易大义编 第5章 解线性方程组的迭代法
文章声明:如有发现错误,欢迎批评指正

文章目录

  • 迭代法的基本概念
  • 雅可比迭代法与高斯-塞格尔迭代法
    • 雅可比迭代法
    • 高斯-塞格尔迭代法

迭代法的基本概念

6.1.1引言:定义:(1)对于给定的线性方程组 x = B x + f x=Bx+f x=Bx+f,用公式 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f逐步带入求近似解的方法称为迭代法(或称为一阶定常迭代法,这里 B B B k k k无关)(2)如果 lim ⁡ k → ∞ x ( k ) \lim\limits_{k\rightarrow\infty}x^{(k)} klimx(k)存在(记为 x ∗ x^* x),称此迭代法收敛,显然 x ∗ x^{*} x就是此方程组的解,否则称此迭代法发散。6.1.2:向量序列与矩阵序列的极限:给定线性方程组 x = B x + f x=Bx+f x=Bx+f及一阶定常迭代法 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f式,对任意选取初始向量 x ( 0 ) x^{(0)} x(0),迭代法 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f式收敛的充要条件是矩阵 B B B的谱半径 ρ ( B ) < 1 \rho(B)<1 ρ(B)<1。其他跳过。

雅可比迭代法与高斯-塞格尔迭代法

雅可比迭代法

{ x ( 0 ) x ( k + 1 ) = B x ( k ) + f , k = 0 , 1 , … , x ( 0 ) 为初始向量, B = D − 1 ( L + U ) , f = D − 1 b \left\{\begin{matrix}x^{(0)}\\x^{(k+1)}=Bx^{(k)}+f,k=0,1,\dots,\end{matrix}\right.x^{(0)}为初始向量,B=D^{-1}(L+U),f=D^{-1}b {x(0)x(k+1)=Bx(k)+f,k=0,1,,x(0)为初始向量,B=D1(L+U),f=D1b
我感觉我写得挺好,可以算作通用代码,前提必须保证收敛。输入:输入系数矩阵行数,系数矩阵,初始向量,迭代次数。输出:解的向量。命名十分规范,懂了理论不难看懂。

def func1(B,x):#不通用的矩阵乘法global nlt=[]for i in range(n):cnt=0for j in range(n):cnt+=B[i][j]*x[j]lt.append(cnt)return lt
def func2(Bx,f):#不通用的矩阵加法global nlt=[]for i in range(n):lt.append(Bx[i]+f[i])return lt
n=int(input())
lt=[]
for _ in range(n):lt.append([eval(_) for _ in input().strip().split()])
D_inv=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):D_inv[i][i]=1/lt[i][i]
L_sum_U=[[0 for _ in range(n)] for _ in range(n)]
for i in range(1,n):for j in range(i):L_sum_U[i][j]=-lt[i][j]
for i in range(n-1):for j in range(i+1,n):L_sum_U[i][j]=-lt[i][j]
B=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):for j in range(n):B[i][j]=L_sum_U[i][j]*D_inv[i][i]
f=[0 for _ in range(n)]
for i in range(n):f[i]=D_inv[i][i]*lt[i][-1]
x=[eval(_) for _ in input().strip().split()]
num=int(input())
for _ in range(1,num+1):x=func2(func1(B,x),f)
print(x)

用的例1,一模一样。
在这里插入图片描述

高斯-塞格尔迭代法

{ x ( 0 ) x ( k + 1 ) = B x ( k ) + f , k = 0 , 1 , … , x ( 0 ) 为初始向量, B = ( D − L ) − 1 U , f = ( D − L ) − 1 b \left\{\begin{matrix}x^{(0)}\\x^{(k+1)}=Bx^{(k)}+f,k=0,1,\dots,\end{matrix}\right.x^{(0)}为初始向量,B=(D-L)^{-1}U,f=(D-L)^{-1}b {x(0)x(k+1)=Bx(k)+f,k=0,1,,x(0)为初始向量,B=(DL)1U,f=(DL)1b
我感觉我写得挺好,可以算作通用代码,前提必须保证收敛。输入:输入系数矩阵行数,系数矩阵,初始向量,迭代次数。输出:解的向量。命名十分规范,懂了理论不难看懂。

def func1(lt1,lt2):#矩阵乘法a,b=len(lt1),len(lt2[0])lt=[[0 for _ in range(b)] for _ in range(a)]for i in range(a):for j in range(b):for p in range(len(lt1[0])):lt[i][j]+=lt1[i][p]*lt2[p][j]return lt
def func2(lt1,lt2):#不通用的矩阵加法global nlt=[]for i in range(n):lt.append([lt1[i][0]+lt2[i][0]])return lt
n=int(input())
lt=[]
for _ in range(n):lt.append([eval(_) for _ in input().strip().split()])
D=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):D[i][i]=lt[i][i]
L=[[0 for _ in range(n)] for _ in range(n)]
for i in range(1,n):for j in range(i):L[i][j]=-lt[i][j]
U=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n-1):for j in range(i+1,n):U[i][j]=-lt[i][j]
D_minus_L=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):for j in range(n):D_minus_L[i][j]=D[i][j]-L[i][j]
#这里涉及一个求解下三角阵的逆矩阵
D_minus_L_inv=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):for j in range(i):cnt=0for k in range(i):cnt-=D_minus_L[i][k]*D_minus_L_inv[k][j]D_minus_L_inv[i][j]=cnt/D_minus_L[i][i]D_minus_L_inv[i][i]=1/D_minus_L[i][i]
B=func1(D_minus_L_inv,U)
f=func1(D_minus_L_inv,[[lt[_][-1]] for _ in range(n)])
x=[[eval(_)] for _ in input().strip().split()]
num=int(input())
for _ in range(1,num+1):x=func2(func1(B,x),f)
print(x)

用的例1,一模一样。
在这里插入图片描述
就这样吧,剩下方法,自己研究。

相关文章:

数值分析第六章节 用Python实现解线性方程组的迭代法

参考书籍&#xff1a;数值分析 第五版 李庆杨 王能超 易大义编 第5章 解线性方程组的迭代法 文章声明&#xff1a;如有发现错误&#xff0c;欢迎批评指正 文章目录 迭代法的基本概念雅可比迭代法与高斯-塞格尔迭代法雅可比迭代法高斯-塞格尔迭代法 迭代法的基本概念 6.1.1引言…...

【低代码专题方案】使用iPaaS平台下发数据,快捷集成MDM类型系统

01 场景背景 伴随着企业信息化建设日趋完善化、体系化&#xff0c;使用的应用系统越来越多&#xff0c;业务发展中沉淀了大量数据。主数据作为数据治理中枢&#xff0c;保存大量标准数据库&#xff0c;如何把庞大的数据下发到各个业务系统成了很棘手的问题。 传统的数据下发方…...

驱动开发 day3 (模块化驱动启动led,蜂鸣器,风扇,震动马达)

模块化驱动启动led,蜂鸣器,风扇,震动马达并加上Makefile 封装模块化驱动&#xff0c;可自由安装卸载驱动&#xff0c;便于驱动更新(附图) 1.安装模块驱动同时初始化各个设备并使能 2.该驱动会自动创建驱动节点. 3.通过c函数程序输入控制各个设备 4.卸载模块驱动 //编译驱动…...

数据结构与算法基础-学习-27-图之最短路径之Dijkstra(迪杰斯特拉)算法

一、最短路径应用案例 例如从北京到上海旅游&#xff0c;有多条路可以到目的地&#xff0c;哪条路线最短&#xff0c;哪条路线最省钱&#xff0c;就是典型的最短路径问题。 二、最短路径问题分类 最短路径问题可以分为两类&#xff0c;第一类为&#xff1a;两点间最短路径。第…...

Windows Server 2012 能使用的playwright版本

由于在harkua_bot里面使用到了playwright&#xff0c;我的服务器又是Windows Server 2012 R2&#xff0c;最新版playwright不支持Windows Server 2012 R2&#xff0c;支持Windows Server 2016以上&#xff0c;所以有了这个需求 https://cdn.npmmirror.com/binaries/playwright…...

css实现溢出变为省略号

单行文本溢出省略 text-overflow&#xff1a;规定当文本溢出时&#xff0c;显示省略符号来代表被修剪的文本 white-space&#xff1a;设置文字在一行显示&#xff0c;不能换行 overflow&#xff1a;文字长度超出限定宽度&#xff0c;则隐藏超出的内容overflow设为hidden&#…...

nginx如何配置两个服务器的连接

nginx 中通过server_name listen的方式配置多个服务器 nginx配置两个站点的windows操作方法&#xff0c;双域名双站点...

Linux环境Arduino IDE中配置ATOM S3

linux选择ubuntu发行版。 硬件设备有多小呢&#xff1a; 功能超级强大。 之前的ROS1和ROS2案例已经全部移植完成并测试结束&#xff08;三轮纯人力校验&#x1f60e;&#xff09;。 官网文档信息非常非常好&#xff1a; https://docs.m5stack.com/zh_CN/quick_start/atoms3…...

【C#】.Net Framework框架下的Authorize权限类

2023年&#xff0c;第31周&#xff0c;第3篇文章。给自己一个目标&#xff0c;然后坚持总会有收货&#xff0c;不信你试试&#xff01; 在C#的.NET Framework中&#xff0c;你可以使用Authorize类来处理权限认证。Authorize类位于System.Web.Mvc命名空间中&#xff0c;它提供了…...

C++ list底层实现原理

文章目录 一、list底层实现二、类构成三、构造函数四、迭代器五、获取第一个元素六、获取最后一个元素七、插入元素 一句话&#xff1a;list底层实现一个双向循环链表 一、list底层实现 一个双向循环链表 二、类构成 class list : protected_List_base_list_base.lsit_impl…...

C#实现数字验证码

开发环境&#xff1a;VS2019&#xff0c;.NET Core 3.1&#xff0c;ASP.NET Core API 1、建立一个验证码控制器 新建两个方法Create和Check&#xff0c;Create用于创建验证码&#xff0c;Check用于验证它是否有效。 声明一个静态类变量存放列表&#xff0c;列表中存放包含令…...

Git的常用命令以及使用场景

文章目录 1.前言2.工作区,暂存区,版本库简介3.Git的常用命令4.版本回退5.撤销修改6.删除文件7.总结 1.前言 在学习Git命令之前,需要先了解工作区,暂存区和版本库这三个概念 2.工作区,暂存区,版本库简介 在使用Git进行版本控制时&#xff0c;有三个重要的概念&#xff1a;工作…...

tcp keepalive

tcp keepalive用于检查两者之间的链路是否正常&#xff0c;或防止链路断开。 一旦建立了TCP连接&#xff0c;该连接被定义为有效&#xff0c;直到一方关闭它。一旦连接进入连接状态&#xff0c;它将无限期地保持连接状态。但实际上&#xff0c;这种联系不会无限期地持续下去。如…...

PP-Matting: AI高精度图像前景Matting,让抠图轻而易举

分割和Matting的一个重要区别是:分割返回的是像素分类标签,其结果是整型数据;而Matting返回的是属于前景或背景的概率P,从而在前景与背景交互区域产生渐变的效果,使得抠图更加自然。Matting分割模型训练完成后,对于原始图像每个位置上的像素,都将生成一个表示其前景透明…...

VUE3-01

1.选项式和组合式 选项式API&#xff1a;按照作用组织代码 组合式API&#xff1a;按照功能组织代码 2.<script setup> <template><div class"about"><h1>{{name}}</h1><button click"sayHello">测试</button>…...

分库分表之基于Shardingjdbc+docker+mysql主从架构实现读写分离(二)

说明&#xff1a;如果实现了docker部署mysql并完成主从复制的话再继续&#xff0c;本篇文章主要说明springboot配置实现Shardingjdbc进行读写分离操作。 如果没实现docker部署mysql实现主从架构的话点击我 Shardingjdbc配置介绍&#xff08;版本&#xff1a;5.3.2&#xff09;…...

Python 进阶(四):日期和时间(time、datetime、calendar 模块)

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 1. time模块1.1 获取当前时间1.2 时间休眠1.3 格式化时间 2. datetime模块2.1 获取当前…...

Transformer背景介绍

目录 Transformer的诞生Transformer的优势Transformer的市场 Transformer的诞生 论文地址 Transformer的优势 Transformer的市场...

深入理解BeanDefinition和Spring Beans

深入理解BeanDefinition和Spring Beans 引言 在Spring框架中&#xff0c;BeanDefinition和Spring Beans是非常重要的概念。BeanDefinition定义了Spring Bean的元数据&#xff0c;而Spring Beans是应用程序中的对象实例。理解BeanDefinition和Spring Beans的概念和使用方法对于…...

实验六 调度器-实验部分

目录 一、知识点 1.进程调度器设计的目标 1.1.进程的生命周期 1.2.用户进程创建与内核进程创建 1.3.进程调度器的设计目标 2.ucore 调度器框架 2.1.调度初始化 2.2.调度过程 2.2.1.调度整体流程 2.2.2.设计考虑要点 2.2.3.数据结构 2.2.4.调度框架应与调度算法无关…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...