数据可视化 - 动态柱状图
基础柱状图
通过Bar构建基础柱状图
from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
# 使用Bar构建基础柱状图
bar = Bar()
# 添加X轴
bar.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴 # 设置数值标签在右侧
bar.add_yaxis("GDP", [30, 50, 40], label_opts=LabelOpts(position="right"))
# 反转X轴和Y轴
bar.reversal_axis()
# 绘图
bar.render("基础柱状图.html")

1. 通过Bar()构建一个柱状图对象
2. 和折线图一样,通过add_xaxis()和add_yaxis()添加x和y轴数据
3. 通过柱状图对象的:reversal_axis(),反转x和y轴
4. 通过label_opts=LabelOpts(position="right")设置数值标签在右侧显示
基础时间线柱状图
创建时间线
Timeline()-时间线
柱状图描述的是分类数据,回答的是每一个分类中『有多少?』这个问题. 这是柱状图的主要特点,同时柱状图很难动态的描述一个趋势性的数据. 这里pyecharts为我们提供了一种解决方案-时间线
如果说一个Bar、Line对象是一张图表的话,时间线就是创建一个 一维的x轴,轴上每一个点就是一个图表对象

# 导入bar柱状图 Timeline时间线
from pyecharts.charts import Bar, Timeline
# 导入系统配置项
from pyecharts.options import LabelOpts
# 导入ThemeType主题类型
from pyecharts.globals import ThemeType
# 使用Bar构建基础柱状图
bar1 = Bar()
# 添加X轴
bar1.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴
bar1.add_yaxis("GDP", [30, 50, 40], label_opts=LabelOpts(position="right"))bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [40, 40, 20], label_opts=LabelOpts(position="right"))bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [50, 30, 30], label_opts=LabelOpts(position="right"))bar4 = Bar()
bar4.add_xaxis(["中国", "美国", "英国"])
bar4.add_yaxis("GDP", [60, 20, 50], label_opts=LabelOpts(position="right"))# 构建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT}) # 主题设置
# 在时间线内部添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
timeline.add(bar4, "点4")
自动播放
timeline.add_schema(play_interval=1000, # 自动播放的时间间隔,单位毫秒is_timeline_show=True, # 是否在自动播放的时候显示时间线is_auto_play=True, # 是否自动播放is_loop_play=True # 是否循环自动播放
)
时间线设置主题
from pyecharts.globals import ThemeTypetimeline = Timeline({"theme": ThemeType.LIGHT}) # 主题设置

完整代码
"""基础时间线柱状图
"""
# 导入bar柱状图 Timeline时间线
from pyecharts.charts import Bar, Timeline
# 导入系统配置项
from pyecharts.options import LabelOpts
# 导入ThemeType主题类型
from pyecharts.globals import ThemeType
# 使用Bar构建基础柱状图
bar1 = Bar()
# 添加X轴
bar1.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴
bar1.add_yaxis("GDP", [30, 50, 40], label_opts=LabelOpts(position="right"))bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"])
bar2.add_yaxis("GDP", [40, 40, 20], label_opts=LabelOpts(position="right"))bar3 = Bar()
bar3.add_xaxis(["中国", "美国", "英国"])
bar3.add_yaxis("GDP", [50, 30, 30], label_opts=LabelOpts(position="right"))bar4 = Bar()
bar4.add_xaxis(["中国", "美国", "英国"])
bar4.add_yaxis("GDP", [60, 20, 50], label_opts=LabelOpts(position="right"))# 构建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT}) # 主题设置
# 在时间线内部添加柱状图对象
timeline.add(bar1, "点1")
timeline.add(bar2, "点2")
timeline.add(bar3, "点3")
timeline.add(bar4, "点4")
# 自动播放设置
timeline.add_schema(play_interval=1000, # 自动播放的时间间隔,单位毫秒is_timeline_show=True, # 是否在自动播放的时候显示时间线is_auto_play=True, # 是否自动播放is_loop_play=True # 是否循环自动播放
)# 绘图
timeline.render("基础时间线柱状图.html")
GDP动态柱状图绘制
需求分析
简单分析后,发现最终效果图中需要:
1. GDP数据处理为亿级
2. 有时间轴,按照年份为时间轴的点
3. x轴和y轴反转,同时每一年的数据只要前8名国家
4. 有标题,标题的年份会动态更改
5. 设置了主题为LIGHT
代码
"""
演示第三个图表:GDP动态柱状图开发
"""
from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeType# 读取数据
f = open("D:/1960-2019全球GDP数据.csv", "r", encoding="GB2312")
data_lines = f.readlines()
# 关闭文件
f.close()
# 删除第一条数据
data_lines.pop(0)
# 将数据转换为字典存储,格式为:
# { 年份: [ [国家, gdp], [国家,gdp], ...... ], 年份: [ [国家, gdp], [国家,gdp], ...... ], ...... }
# { 1960: [ [美国, 123], [中国,321], ...... ], 1961: [ [美国, 123], [中国,321], ...... ], ...... }
# 先定义一个字典对象
data_dict = {}
for line in data_lines:year = int(line.split(",")[0]) # 年份country = line.split(",")[1] # 国家gdp = float(line.split(",")[2]) # gdp数据# 如何判断字典里面有没有指定的key呢?try:data_dict[year].append([country, gdp])except KeyError:data_dict[year] = []data_dict[year].append([country, gdp])# print(data_dict[1960])
# 创建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT})
# 排序年份
sorted_year_list = sorted(data_dict.keys())
for year in sorted_year_list:data_dict[year].sort(key=lambda element: element[1], reverse=True)# 取出本年份前8名的国家year_data = data_dict[year][0:8]x_data = []y_data = []for country_gdp in year_data:x_data.append(country_gdp[0]) # x轴添加国家y_data.append(country_gdp[1] / 100000000) # y轴添加gdp数据# 构建柱状图bar = Bar()x_data.reverse()y_data.reverse()bar.add_xaxis(x_data)bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))# 反转x轴和y轴bar.reversal_axis()# 设置每一年的图表的标题bar.set_global_opts(title_opts=TitleOpts(title=f"{year}年全球前8GDP数据"))timeline.add(bar, str(year))# for循环每一年的数据,基于每一年的数据,创建每一年的bar对象
# 在for中,将每一年的bar对象添加到时间线中# 设置时间线自动播放
timeline.add_schema(play_interval=1000,is_timeline_show=True,is_auto_play=True,is_loop_play=False
)
# 绘图
timeline.render("1960-2019全球GDP前8国家.html")

相关文章:
数据可视化 - 动态柱状图
基础柱状图 通过Bar构建基础柱状图 from pyecharts.charts import Bar from pyecharts.options import LabelOpts # 使用Bar构建基础柱状图 bar Bar() # 添加X轴 bar.add_xaxis(["中国", "美国", "英国"]) # 添加Y轴 # 设置数值标签在右侧 b…...
【JVM】JVM五大内存区域介绍
目录 一、程序计数器(线程私有) 二、java虚拟机栈(线程私有) 2.1、虚拟机栈 2.2、栈相关测试 2.2.1、栈溢出 三、本地方法栈(线程私有) 四、java堆(线程共享) 五、方法区&…...
自动驾驶感知系统--惯性导航定位系统
惯性导航定位 惯性是所有质量体本身的基本属性,所以建立在牛顿定律基础上的惯性导航系统(Inertial Navigation System,INS)(简称惯导系统)不与外界发生任何光电联系,仅靠系统本身就能对车辆进行连续的三维定位和三维定向。卫星导…...
Netty简介
Netty Netty初体验基础概念Reactor模型传统的阻塞IO模型基础Reactor模型多线程Reactor模型 为什么要使用Netty? (NIO的框架,用于解决高并发出现的问题) *BIO:同步且阻塞的IO NIO:同步且非阻塞的IO(不是说线程&#x…...
基于TCP/IP对等模型对计算机网络知识点的整合
目录 前言 应用层 Telnet SSH FTP/TFTP SNMP:简单的网络管理协议 HTTP:超文本传输协议 SMTP:电子邮件传输协议 DNS:域名解析协议 DHCP:动态主机配置协议 NTP:网络时钟协议 传输层 TCP UDP 端…...
【SQL应知应会】表分区(一)• Oracle版
欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习,有基础也有进阶,有MySQL也有Oracle 分区表 • Oracle版 前言一、分区表1.什么是表分区…...
PostgreSQL 常用空间处理函数
1.OGC标准函数 管理函数: 添加几何字段 AddGeometryColumn(, , , , , ) 删除几何字段 DropGeometryColumn(, , ) 检查数据库几何字段并在geometry_columns中归档 Probe_Geometry_Columns() 给几何对象设置空间参考(在通过一个范围做空间查询时常用&…...
ubuntu初始化/修改root密码
1.登录ubuntu后,使用sudo passwd root命令,进行root密码的初始化/修改,注:这里需要保证两次输入的密码都是同一个,才可成功 ubuntugt-ubuntu22-04-cmd-v1-0-32gb-100m:~/ocr$ sudo passwd root New password: Retype…...
【Linux后端服务器开发】select多路转接IO服务器
目录 一、高级IO 二、fcntl 三、select函数接口 四、select实现多路转接IO服务器 一、高级IO 在介绍五种IO模型之前,我们先讲解一个钓鱼例子。 有一条大河,河里有很多鱼,分布均匀。张三是一个钓鱼新手,他钓鱼的时候很紧张&a…...
支持向量机(iris)
代码: import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn import svm import numpy as np# 定义每一列的属性 colnames [sepal-length, sepal-width, petal-length, petal-width, class] # 读取数据 iris pd.read_csv(data\\i…...
24考研数据结构-第二章:线性表
目录 第二章:线性表2.1线性表的定义(逻辑结构)2.2 线性表的基本操作(运算)2.3 线性表的物理/存储结构(确定了才确定数据结构)2.3.1 顺序表的定义2.3.1.1 静态分配2.3.1.2 动态分配2.3.1.3 mallo…...
Mybatis 动态 sql 是做什么的?都有哪些动态 sql?能简述动态 sql 的执行原理不?
OGNL表达式 OGNL,全称为Object-Graph Navigation Language,它是一个功能强大的表达式语言,用来获取和设置Java对象的属性,它旨在提供一个更高的更抽象的层次来对Java对象图进行导航。 OGNL表达式的基本单位是"导航链"&a…...
250_C++_typedef std::function<int(std::vector<int> vtBits)> fnChkSstStt
假设我们需要定义一个函数类型来表示一个能够计算整数向量中所有元素之和的函数。 首先,我们定义一个函数,它的参数是一个 std::vector 类型的整数向量,返回值是 int 类型,表示所有元素之和: int sumVectorElements(std::vector<int> vt) {int sum = 0;for (int n…...
无涯教程-jQuery - Transfer方法函数
Transfer 效果可以与effect()方法一起使用。这会将元素的轮廓转移到另一个元素。尝试可视化两个元素之间的交互时非常有用。 Transfer - 语法 selector.effect( "transfer", {arguments}, speed ); 这是所有参数的描述- className - 传输元素将收到的可选类名。…...
openGauss学习笔记-24 openGauss 简单数据管理-模式匹配操作符
文章目录 openGauss学习笔记-24 openGauss 简单数据管理-模式匹配操作符24.1 LIKE24.2 SIMILAR TO24.3 POSIX正则表达式 openGauss学习笔记-24 openGauss 简单数据管理-模式匹配操作符 数据库提供了三种独立的实现模式匹配的方法:SQL LIKE操作符、SIMILAR TO操作符…...
JAVASE---数据类型与变量
1. 字面常量 常量即程序运行期间,固定不变的量称为常量,比如:一个礼拜七天,一年12个月等。 public class Demo{ public static void main(String[] args){ System.Out.println("hello world!"); System.Out.println(…...
IDEA Groovy 脚本一键生成实体类<mybatisplus>
配置数据库(mysql) 一键生成(右键点击table) 配置自己的groovy脚本 import com.intellij.database.model.DasTable import com.intellij.database.util.Case import com.intellij.database.util.DasUtil import com.intellij.data…...
无涯教程-jQuery - Puff方法函数
吹气效果可以与show/hide/toggle一起使用。通过按比例放大元素并同时隐藏它,可以形成粉扑效果。 Puff - 语法 selector.hide|show|toggle( "puff", {arguments}, speed ); 这是所有参数的描述- model - 效果的模式。可以是"显…...
什么叫前后端分离?为什么需要前后端问题?解决了什么问题?
单体架构出现的问题 引出:来看一个单体项目架构的结构 通过上述可以看到单体架构主要存在以下几点问题: 开发人员同时负责前端和后端代码开发,分工不明确开发效率低前后端代码混合在一个工程中,不便于管理对开发人员要求高(既会前…...
Vector<T> 动态数组(随机访问迭代器)(答案)
答案如下 //------下面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------ #include <algorithm> #include <cstdlib> #include <iostream> #include <vector> #include <utility> using namespace std; struct Record { Record…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

