[SQL挖掘机] - 窗口函数介绍
介绍:
窗口函数也称为 OLAP 函数。OLAP 是 OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。窗口函数是一种用于执行聚合计算和排序操作的功能强大的sql函数。它们可以在查询结果集中创建一个窗口(window),并在该窗口上进行计算,而不影响结果集的整体。
窗口函数通常与over子句一起使用,以定义窗口的范围。over子句可以指定窗口的排序方式、分区方式和边界等。
为了便于理解,称之为 窗口函数。常规的 select 语句都是对整张表进行查询,而窗口函数可以让我们有选择的去某一部分数据进行汇总、计算和排序。
用法:
窗口函数的通用形式:
<窗口函数> over ([ partition by <列名> ] [ order by <排序用列名> ])
[ ]中的内容可以省略。
窗口函数最关键的是搞明白关键字 partiton by 和 order by 的作用。
- partiton by 子句 可选参数,指示如何将查询行划分为组,类似于 group by 子句的分组功能,但是 partition by 子句并不具备 group by 子句的汇总功能,并不会改变原始表中记录的行数。
- order by 子句 可选参数,指示如何对每个分区中的行进行排序,即决定窗口内,是按那种规则(字段)来排序的。
注意:
虽然 partiton by 子句 和 order by 子句 都是可选参数,但是两个参数不能同时没有(最少二选一)。不然, <窗口函数> over( ) 这种用法没用实际意义(窗口由所有查询行组成,窗口函数使用所有行计算结果)。
分类:
常用的窗口函数有:
- row_number():为每一行返回一个唯一的数值,通常用于给结果集中的行进行编号。
- rank()和dense_rank():根据指定的排序顺序,为结果集中的每一行分配一个排名。rank()在遇到相同的值时会跳过相同的排名,而dense_rank()不会跳过。
- lag()和lead():lag函数用于获取当前行之前的某一行的值,lead函数用于获取当前行之后的某一行的值。它们与排序有关,可以用于查找前一行或后一行的值。
- sum()、avg()、min()、max()等聚合函数:这些聚合函数可以在窗口范围内进行计算,并返回结果集中每一行的聚合值。
除了以上列举的函数外,窗口函数还有其他一些类型和变种,可以根据具体的需求选择使用。
窗口函数在sql中的应用非常广泛,可以用于计算移动平均、累计求和、分组内排序等。它们提供了一种灵活且高效的方式来处理复杂的查询需求。
相关文章:
[SQL挖掘机] - 窗口函数介绍
介绍: 窗口函数也称为 OLAP 函数。OLAP 是 OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。窗口函数是一种用于执行聚合计算和排序操作的功能强大的sql函数。它们可以在查询结果集中创建一个窗口(window)…...
原生js实现锚点滚动顶部
简介 使用原生js API实现滚动到指定容器的顶部,API是scrollIntoView 使用 let eldocment.querySelector() 获取dom元素el.scrollIntoView()该元素滚动到其父元素的顶部 高级用法 scrollIntoView(Options)//option可以配置如下 options{behavior:smoot…...
使用mysql接口遇到点问题
game_server加入了dbstorage的代码。dbstorage实现了与mysql的交互:driver_mysql。其中调用了mysql相关的接口。所以game_server需要链接libmysql.lib。 从官网下载了mysql的源码:在用cmake构建mysql工程的时候,遇到了一些问题。 msyql8.0需…...
excel绘制折线图或者散点图
一、背景 假如现在通过代码处理了一批数据,想看数据的波动情况,是不是还需要写个pyhon代码,读取文件,绘制曲线,看起来也简单,但是还有更简单的方法,就是直接生成csv文件,csv文件就是…...
ChatGPT长文本对话输入方法
ChatGPT PROMPTs Splitter 是一个开源工具,旨在帮助你将大量上下文数据分成更小的块发送到 ChatGPT 的提示,并根据如何处理所有块接收到 ChatGPT(或其他具有字符限制的语言模型)的方法。 推荐:用 NSDT设计器 快速搭建可…...
FFmpeg-swresample的更新
auto convert的创建 在FFmpeg/libavfilter/formats.c中定义了negotiate_video和negotiate_audio,在格式协商,对于video如果需要scale,那么就会自动创建scale作为convert,对于audio,如果需要重采样,则会创建…...
回答网友 修改一个exe
网友说:他有个很多年前的没有源码的exe,在win10上没法用,让俺看一下。 俺看了一下,发现是窗体设计的背景色的问题。这个程序的背景色用的是clInactiveCaptionText。clInactiveCaptionText 在win10之前的系统上是灰色,但…...
数据可视化 - 动态柱状图
基础柱状图 通过Bar构建基础柱状图 from pyecharts.charts import Bar from pyecharts.options import LabelOpts # 使用Bar构建基础柱状图 bar Bar() # 添加X轴 bar.add_xaxis(["中国", "美国", "英国"]) # 添加Y轴 # 设置数值标签在右侧 b…...
【JVM】JVM五大内存区域介绍
目录 一、程序计数器(线程私有) 二、java虚拟机栈(线程私有) 2.1、虚拟机栈 2.2、栈相关测试 2.2.1、栈溢出 三、本地方法栈(线程私有) 四、java堆(线程共享) 五、方法区&…...
自动驾驶感知系统--惯性导航定位系统
惯性导航定位 惯性是所有质量体本身的基本属性,所以建立在牛顿定律基础上的惯性导航系统(Inertial Navigation System,INS)(简称惯导系统)不与外界发生任何光电联系,仅靠系统本身就能对车辆进行连续的三维定位和三维定向。卫星导…...
Netty简介
Netty Netty初体验基础概念Reactor模型传统的阻塞IO模型基础Reactor模型多线程Reactor模型 为什么要使用Netty? (NIO的框架,用于解决高并发出现的问题) *BIO:同步且阻塞的IO NIO:同步且非阻塞的IO(不是说线程&#x…...
基于TCP/IP对等模型对计算机网络知识点的整合
目录 前言 应用层 Telnet SSH FTP/TFTP SNMP:简单的网络管理协议 HTTP:超文本传输协议 SMTP:电子邮件传输协议 DNS:域名解析协议 DHCP:动态主机配置协议 NTP:网络时钟协议 传输层 TCP UDP 端…...
【SQL应知应会】表分区(一)• Oracle版
欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习,有基础也有进阶,有MySQL也有Oracle 分区表 • Oracle版 前言一、分区表1.什么是表分区…...
PostgreSQL 常用空间处理函数
1.OGC标准函数 管理函数: 添加几何字段 AddGeometryColumn(, , , , , ) 删除几何字段 DropGeometryColumn(, , ) 检查数据库几何字段并在geometry_columns中归档 Probe_Geometry_Columns() 给几何对象设置空间参考(在通过一个范围做空间查询时常用&…...
ubuntu初始化/修改root密码
1.登录ubuntu后,使用sudo passwd root命令,进行root密码的初始化/修改,注:这里需要保证两次输入的密码都是同一个,才可成功 ubuntugt-ubuntu22-04-cmd-v1-0-32gb-100m:~/ocr$ sudo passwd root New password: Retype…...
【Linux后端服务器开发】select多路转接IO服务器
目录 一、高级IO 二、fcntl 三、select函数接口 四、select实现多路转接IO服务器 一、高级IO 在介绍五种IO模型之前,我们先讲解一个钓鱼例子。 有一条大河,河里有很多鱼,分布均匀。张三是一个钓鱼新手,他钓鱼的时候很紧张&a…...
支持向量机(iris)
代码: import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn import svm import numpy as np# 定义每一列的属性 colnames [sepal-length, sepal-width, petal-length, petal-width, class] # 读取数据 iris pd.read_csv(data\\i…...
24考研数据结构-第二章:线性表
目录 第二章:线性表2.1线性表的定义(逻辑结构)2.2 线性表的基本操作(运算)2.3 线性表的物理/存储结构(确定了才确定数据结构)2.3.1 顺序表的定义2.3.1.1 静态分配2.3.1.2 动态分配2.3.1.3 mallo…...
Mybatis 动态 sql 是做什么的?都有哪些动态 sql?能简述动态 sql 的执行原理不?
OGNL表达式 OGNL,全称为Object-Graph Navigation Language,它是一个功能强大的表达式语言,用来获取和设置Java对象的属性,它旨在提供一个更高的更抽象的层次来对Java对象图进行导航。 OGNL表达式的基本单位是"导航链"&a…...
250_C++_typedef std::function<int(std::vector<int> vtBits)> fnChkSstStt
假设我们需要定义一个函数类型来表示一个能够计算整数向量中所有元素之和的函数。 首先,我们定义一个函数,它的参数是一个 std::vector 类型的整数向量,返回值是 int 类型,表示所有元素之和: int sumVectorElements(std::vector<int> vt) {int sum = 0;for (int n…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
