大数据课程D7——hadoop的YARN
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州
▲ 本章节目的
⚪ 了解YARN的概念和结构;
⚪ 掌握YARN的资源调度流程;
⚪ 了解Hadoop支持的资源调度器:FIFO、Capacity、Fair;
⚪ 掌握YARN的完全分布式结构和常见问题;
⚪ 掌握YARN的服役新节点操作;
一、简介
1. 概述
1. Another Resource Negotiator - 迄今另一个资源调度器) - 负责任务管理和资源调度。
2. YARN是Hadoop2.X开始出现的,也是Hadoop2.X中最重要的特性之一。也正是因为YARN的出现,导致Hadoop1.X和Hadoop2.X不兼容。
3. 产生原因:
a. 内部原因:
Ⅰ. 在Hadoop1.X中,没有YARN的说法,此时MapReduce分为主进程JobTracker和从进程TaskTracker。JobTracker只允许存在1个,容易出现单点故障。
Ⅱ. JobTracker负责对外接收任务,接收到任务之后需要将任务拆分成子任务(MapTask和ReduceTask)。JobTracker拆分完任务之后,将子任务分配给从进程TaskTracker。JobTracker会监控每一个TaskTracker的执行情况。在官方文档中,每一个JobTracker最多能够管理4000个TaskTracker。如果TaskTracker数量过多,导致JobTracker的效率成别下降,甚至于导致JobTracker的崩溃。
b. 外部原因:
Ⅰ. Hadoop产生的时候,市面上并没有太多的大数据框架,因此Hadoop在刚开始涉及的时候,只考虑MapReduce的资源调度问题。
Ⅱ. 后来随着大数据的发展,产生了越来越多的计算框架,很大一部分的框架都是围绕着Hadoop使用,因为Hadoop没有考虑其他框架的资源调度问题,所以这些计算框架就产生了资源调度冲突。
4. YARN的结构:
a. 主进程ResourceManager:
Ⅰ. 负责对外接收请求
Ⅱ. 负责管理NodeManager
Ⅲ. 负责管理ApplicationMaster
b. 从进程NodeManager:
Ⅰ. 执行任务。
Ⅱ. 负责管理本节点上的资源。
c. 辅助进程ApplicationMaster:负责管理具体的子任务。
2. 流程
1. 当ResourceManager收到客户端提交的任务之后,会先将这个任务临时存储下来,等待NodeManager的心跳。
2. 当ResourceManager收到NodeManager的心跳之后,会在心跳响应中将Job任务返回给NodeManager。
3. NodeManager通过心跳响应之后,收到任务之后,就会在本节点内部开启一个ApplicationMaster进程,然后将Job任务交给这个ApplicationMaster处理。
4. ApplicationMaster收到任务之后,会将Job任务来进行拆分,拆分成子任务。例如,如果是一个MapReduce程序,那么拆分成MapTask和ReduceTask。
5. 拆分完成之后,ApplicationMaster会给ResourceManager发送请求申请资源。
6. ResourceManager收到请求之后,将请求交给内部组件ResourceScheduler处理。
7. ResourceScheduler收到请求之后,会将资源的描述封装成一个Container对象返回给ApplicationMaster。
8. ApplicationMaster收到资源之后,会对资源进行二次拆分,分配给具体的子任务,然后将子任务分配到不同的NodeManager上执行,并且ApplicationMaster还会监控这些子任务的执行。
9. 如果子任务执行失败,那么ApplicationMaster监控到之后,会自动的重启这个失败的子任务,或者会自动的将失败的子任务分配到其他的节点上重新执行。
10. 当Job任务结束之后,ApplicationMaster会ResourceManager发送请求,同时请求注销自己。

3. ResourceScheduler - 资源调度器
1. 在Hadoop中,目前为止,支持3种资源调度器:FIFO(先进先出),Capacity(资源容量)以及Fair(公平)。
2. FIFO(先进先出):
a. 在Hadoop2.X中,默认使用是这个资源调度器,但是Hadoop3.X发生变化。
b. 底层会为维系唯一的队列,任务会先进入队列,然后从队列头获取任务,为这个任务分配资源。如果资源不充足的情况下,后入队的任务就会被阻塞。
3. Capacity(资源容量):
a. 在Hadoop3.X中,默认使用的是这个资源调度器。
b. 这个资源调度器中,可以维系多个队列,每一个队列维系FIFO的规则。默认情况下,这个调度器中只有1个队列default。
c. 如果资源调度器中维系了多个队列,那么可以为每一个队列设置资源分配比。在提交任务的时候,可以将任务提交到不同的队列中。
4. Fair(公平资源):
a. 在这个资源调取其中,也可以维系多个队列。
b. 这个队列中可以保证每一个在时间上是相对公平中 - 即任务在队列中是进行轮询的。
二、完全分布式结构
1. 结构

2. 常见问题
1. 在第一次关闭Hadoop之前,先修改stop-dfs.sh和stop-yarn.sh中的内容。将start-dfs.sh中添加的内容放到stop-dfs.sh中,将start-yarn.sh中的内容放到stop-yarn.sh中。
2. 在Hadoop集群中,一定要先启动Zookeeper再启动Hadoop。
3. 以后再次启动Hadoop,只需要通过start-all.sh即可启动。
4. 在执行命令的时候,出现了Name or service not known或者UnknownHost之类的异常,那么先检查主机名是否写对;再检查/etc/hostname或者是/etc/hosts文件是否配置正确。
5. 在进行ssh的时候需要输入密码,需要重新进行免密。
6. 在执行命令的时候,出现了command not found,那么先检查命令是否配置正确;然后再检查/etc/profile中的环境变量是否配置正确;最后确定对/etc/profile文件修改之后是否进行了重新生效source。
7. 在格式化的时候,出现了HA is not enabled/HA is not available之类的异常,那么说明Hadoop和当前系统出现了兼容性问题 - 重装系统。
8. 如果执行命令的时候出现了IllegalArgument之类的异常,那么说明命令或者参数写错了。
9. 如果启动之后,发现缺少了QuorumPeerMain,那么Zookeeper启动失败。
10. 如果启动之后,发现缺少了NameNode/DataNode/JournalNode/ DFSZKFailoverController进程,可以试图通过hdfs --daemon start namenode/datanode/journalnode/zkfc来单独这个进程,例如hdfs --daemon start datanode。
11. 如果启动之后,发现缺少了ResourceManager/NodeManage进程,那么可以试图通过yarn --daemon start resourcemanager/nodemanager来单独启动这个进程,例如yarn --daemon start nodemanager。
12. 如果在启动的时候,出现process already running as xxx,那么先kill -9 xxx,然后再单独重新启动。
13. 在NameNode格式化的时候,如果格式化失败,那么改错之后,先删除掉/home/software/hadoop-3.1.3/tmp/dfs/name目录,再重新格式化。
三、扩展
1. 服役新节点
1. 先修改新节点的主机名
vim /etc/hostname
#将主机名改为对应的名字,例如hadoop04
2. 进行主机名和IP的映射
vim /etc/hosts
#需要将所有云主机的IP和主机名都进行映射
cd /etc/
#远程拷贝给其他主机
scp -r hosts root@hadoop01:$PWD
scp -r hosts root@hadoop02:$PWD
scp -r hosts root@hadoop03:$PWD
3. 重启
4. 配置免密码互通
ssh-keygen
ssh-copy-id root@hadoop01
ssh hadoop01 --- 如果不需要密码,则输入logout
ssh-copy-id root@hadoop02
ssh hadoop02 --- 如果不需要密码,则输入logout
ssh-copy-id root@hadoop03
ssh hadoop03 --- 如果不需要密码,则输入logout
5. 所有的主机都需要和新添加的节点进行免密
ssh-copy-id root@hadoop04
ssh hadoop04 --- 如果不需要密码,则输入logout
6. 从其他节点拷贝一个Hadoop安装目录到第四个节点上
cd /home/software/
scp -r hadoop-3.1.3 root@hadoop04:$PWD
7. 新添加的节点上,进入Hadoop的安装目录,然后删除对应的目录
cd /home/software/hadoop-3.1.3/
rm -rf tmp
rm -rf logs/
8. 新节点配置环境变量
vim /etc/profile
#在文件末尾添加
export HADOOP_HOME=/home/software/hadoop-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
#保存退出,重新生效
source /etc/profile
9. 启动DataNode
10. 启动YARN
2. Federation HDFS - 联邦HDFS
1. 当前HDFS架构的弊端:
a. NameNode会将元数据维系在内存中。实际开发中,一台服务器大概能腾出50G左右的内存给NameNode来使用,也就意味着一台服务器大概能存储3亿~4亿条元数据,经过计算,意味着NameNode所管理的集群大概能够存储12~15PB的数据。但是在现在的开发中,很多大型企业的数据量已经超过上百PB,原始的NameNode架构就不能满足这个需求。
b. NameNode无法做到程序的隔离。所有的元数据都维系在一个NameNode上,意味着如果某一个任务占用的资源比较多,那么就会影响其他在进行的任务。
c. 所有的请求都只能访问这唯一的一个NameNode,此时NameNode的并发量就成了整个HDFS的并发瓶颈。
2. 在联邦HDFS中,可以利用多个节点同时作为NameNode对外接收请求,在请求之前,需要将HDFS中的路径于NameNode之间来进行映射。每一个路径必须对应某一个NameNode。
3. 在联邦HDFS中,所有的请求不再集中于某一个节点上而是分散到不同的节点上,从而提高了集群的并发量的上限。
4. 因为不同路径分别对应了不同的节点,此时某一个节点上资源被过多的占用,例如节点的磁盘的IO资源占用比较多,并不会影响其他的节点的读写。
5. 因为利用多个NameNode来实现功能,此时元数据也不再集中于一个节点上,而是分散到多个节点上,大大的提高了集群的数据量容纳的上限。
6. 在联邦HDFS中,要求所有的NameNode的BlockPoolID必须一致。
相关文章:
大数据课程D7——hadoop的YARN
文章作者邮箱:yugongshiyesina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解YARN的概念和结构; ⚪ 掌握YARN的资源调度流程; ⚪ 了解Hadoop支持的资源调度器:FIFO、Capacity、Fair; ⚪ 掌握YA…...
Rust vs Go:常用语法对比(十三)
题图来自 Go vs. Rust: The Ultimate Performance Battle 241. Yield priority to other threads Explicitly decrease the priority of the current process, so that other execution threads have a better chance to execute now. Then resume normal execution and call f…...
【【51单片机DA转换模块】】
爆改直流电机,DA转换器 main.c #include <REGX52.H> #include "Delay.h" #include "Timer0.h"sbit DAP2^1;unsigned char Counter,Compare; //计数值和比较值,用于输出PWM unsigned char i;void main() {Timer0_Init();whil…...
[SQL挖掘机] - 字符串函数 - substring
介绍: substring函数是在mysql中用于提取字符串的一种函数。它接受一个字符串作为输入,并返回从该字符串中指定位置开始的一部分子串。substring函数可以用于获取字符串中的特定字符或子串,以便进行进一步的处理或分析。 用法: 下面是substring函数的…...
第一百一十六天学习记录:C++提高:STL-string(黑马教学视频)
string基本概念 string是C风格的字符串,而string本质上是一个类 string和char区别 1、char是一个指针 2、string是一个类,类内部封装了char*,管理这个字符串,是一个char型的容器。 特点: string类内部封装了很多成员方…...
Meta-Transformer 多模态学习的统一框架
Meta-Transformer是一个用于多模态学习的新框架,用来处理和关联来自多种模态的信息,如自然语言、图像、点云、音频、视频、时间序列和表格数据,虽然各种数据之间存在固有的差距,但是Meta-Transformer利用冻结编码器从共享标记空间…...
tinkerCAD案例:24.Tinkercad 中的自定义字体
tinkerCAD案例:24.Tinkercad 中的自定义字体 原文 Tinkercad Projects Tinkercad has a fun shape in the Shape Generators section that allows you to upload your own font in SVG format and use it in your designs. I’ve used it for a variety of desi…...
list与流迭代器stream_iterator
运行代码: //list与流迭代器 #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}friend ist…...
九耶:冯·诺伊曼体系
冯诺伊曼体系(Von Neumann architecture)是一种计算机体系结构,它由匈牙利数学家冯诺伊曼于1945年提出。冯诺伊曼体系是现代计算机体系结构的基础,几乎所有的通用计算机都采用了这种体系结构。 冯诺伊曼体系的核心思想是将计算机硬…...
探索UCI心脏病数据:利用R语言和h2o深度学习构建预测模型
一、引言 随着机器学习模型在实际应用中的广泛应用,人们对于模型的解释性和可理解性日益关注。可解释性机器学习是指能够清晰、透明地解释机器学习模型决策过程的一种方法和技术。在许多领域中,如医疗诊断、金融风险评估和自动驾驶等,解释模型…...
基于 moleculer 微服务架构的智能低代码PaaS 平台源码 可视化开发
低代码开发平台源码 低代码管理系统PaaS 平台 无需代码或通过少量代码就可以快速生成应用程序的开发平台。 本套低代码管理后台可以支持多种企业应用场景,包括但不限于CRM、ERP、OA、BI、IoT、大数据等。无论是传统企业还是新兴企业,都可以使用管理后台…...
xrdp登录显示白屏且红色叉
如上图所示,xrdp登录出现了红色叉加白屏,这是因为不正常关闭导致,解决方法其实挺简单的 #进入/usr/tmp cd /usr/tmp #删除对应用户的kdecache-** 文件(我这里使用的是kde桌面),例如删除ywj用户对应的文件 …...
Docker安装 Mysql 8.x 版本
文章目录 Docker安装 Mysql 8.0.22Mysql 创建账号并授权Mysql 数据迁移同版本数据迁移跨版本数据迁移 Mysql 5.x 版本与 Mysql 8.x版本是两个大版本,这里演示安装Mysql 8.x版本 Docker安装 Mysql 8.0.22 # 下载mysql $ docker pull mysql 默认安装最新…...
【数理知识】刚体 rigid body 及刚体的运动
文章目录 1 刚体2 刚体一般运动1 平移运动2 旋转运动 Ref 1 刚体 刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。绝对刚体实际上是不存在的,只是一种理想模型,因为任何物体在受力作用后&#…...
【UE5 多人联机教程】03-创建游戏
效果 步骤 打开“UMG_MainMenu”,增加创建房间按钮的点击事件 添加如下节点 其中,“FUNL Fast Create Widget”是插件自带的函数节点,内容如下: “创建会话”节点指游戏成功创建一个会话后,游戏的其他实例即可发现&am…...
【时间序列预测 】M4
【时间序列预测 】M4 论文题目:The M4 Competition: 100,000 time series and 61 forecasting methods 中文题目: 论文链接: 论文代码: 论文团队: 发表时间: DOI: 引用: 引用数: 摘要…...
SpringCloud微服务实战——搭建企业级开发框架(五十三):微信小程序授权登录增加多租户可配置界面
GitEgg框架集成weixin-java-miniapp工具包以实现微信小程序相关接口调用功能,weixin-java-miniapp底层支持多租户扩展。每个小程序都有唯一的appid,weixin-java-miniapp的多租户实现并不是以租户标识TenantId来区分的,而是在接口调用时&#…...
Stability AI推出Stable Diffusion XL 1.0,文本到图像模型
Stability AI宣布推出Stable Diffusion XL 1.0,这是一个文本到图像的模型,该公司将其描述为迄今为止“最先进的”版本。 Stability AI表示,SDXL 1.0能生成更加鲜明准确的色彩,在对比度、光线和阴影方面做了增强,可生成…...
B076-项目实战--宠物上下架 展示 领养 收购订单
目录 上下架功能提供后台宠物列表实现 前台展示前台宠物列表和详情展示店铺展示 领养分析前台后端PetControllerPetServiceImpl 订单需求分析可能产生订单的模块订单模块额外功能 订单设计表设计流程设计 集成基础代码收购订单创建订单前端后端 上下架功能提供 后台宠物列表实…...
【iOS】—— 持久化
文章目录 数据持久化的目的iOS中数据持久化方案数据持久化方式分类内存缓存磁盘缓存 沙盒机制获取应用程序的沙盒路径沙盒目录的获取方式 持久化数据存储方式XML属性列表Preferences偏好设置(UserDefaults)数据库存储什么是序列化和反序列化,…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
