当前位置: 首页 > news >正文

机器学习深度学习——softmax回归(上)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——线性回归的简洁实现
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

softmax回归

  • 分类问题
  • 网络架构
  • 全连接层的参数开销
  • softmax运算
  • 小批量样本的矢量化

回归可以用来预测多少的问题,比如房屋被售出价格。而除了预测,我们也对分类问题感兴趣,不是问“多少”,而是问“哪一个”。如:“某个邮件是否是垃圾邮件?图像描绘的是什么动物?某人接下来最可能看哪部电影?”

分类问题

以图像分类为例,每次输入一个2×2的灰度图像,可以用一个标量表示每个像素值,每个图像对应四个特征x1、x2、x3、x4。假设每个图像属于类别“猫”“鸡”和“狗”中的一个。
接下来要选择如何表示标签,最直接的想法是选择y∈{1,2,3}分别代表{狗,猫,鸡}。
如果类别间有一些自然顺序,比如我们要试图预测{婴儿,儿童,青少年,青年人,中年人,老年人},那么该问题就会转变为回归问题。但一般的分类问题和类别之间的自然顺序是无关的。
独热编码
独热编码是一个向量,它的分量与类别是一样多的。类别对应的分量设置为1,其它所有分量设置为0,如:
y∈{(1,0,0),(0,1,0),(0,0,1)}分别代表三类动物。

网络架构

要解决线性模型的分类问题,需要设置和输出一样多的仿射函数,在上面的问题中,我们有4个特征和3个可能的输出类别,所以我们需要用12个标量来表示权重,3个标量来表示偏置(带下标的b):
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 o 2 = x 2 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 o 1 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 o_1=x_1w_{11}+x_2w_{12}+x_3w_{13}+x_4w_{14}+b_1\\ o_2=x_2w_{21}+x_2w_{22}+x_3w_{23}+x_4w_{24}+b_2\\ o_1=x_1w_{31}+x_2w_{32}+x_3w_{33}+x_4w_{34}+b_3 o1=x1w11+x2w12+x3w13+x4w14+b1o2=x2w21+x2w22+x3w23+x4w24+b2o1=x1w31+x2w32+x3w33+x4w34+b3
其中o表示未规范化的预测。
我们可以用神经网络图来描述这个计算过程,显然softmax回归也是个单层神经网络。由于输出取决于所有的输入,所以softmax回归的输出层也是全连接层
在这里插入图片描述
可以用o=Wx+b来表示模型。

全连接层的参数开销

全连接层无处不在,对于任何具有d个输入和q个输出的全连接层,参数开销为:
O ( d q ) O(dq) O(dq)
这个数字还是太大了,但将d个输入转换为q个输出的成本可以减少到:
O ( d q n ) O(\frac{dq}{n}) O(ndq)
超参数n可以由我们灵活指定。

softmax运算

现在我们将优化参数以最大化观测数据的概率。为了得到预测结果,我们设置一个阈值,如选择具有最大概率的标签。
我们希望模型输出三个类的概率,然后选用最大输出值来作为我们的预测。
我们不能将未规范化的预测o直接视作我们感兴趣的输出。因为将线性层的输出直接视为概率时会存在一些问题:
1、我们没有限制这些输出数字的总和为1。
2、根据输入的不同,它们可以为负值,违背了概率基本公理。
要将输出视为概率,必须保证在任何数据上的输出都是非负的且总和为1。此外,需要训练一个目标函数,来激励模型精准的估计概率。例如,在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。这个属性叫做校准
而softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们让每个求幂后的结果除以它们的总和:
y ^ = s o f t m a x ( o ) ,其中 y ^ j = e x p ( o j ) ∑ k e x p ( o k ) \hat{y}=softmax(o),其中\hat{y}_j=\frac{exp(o_j)}{\sum_kexp(o_k)} y^=softmax(o),其中y^j=kexp(ok)exp(oj)
这里,对于所有的j,总有:
0 ≤ y ^ j ≤ 1 0≤\hat{y}_j≤1 0y^j1
因此,y hat可以视为一个正确的概率分布。
softmax运算不会改变未规范化的预测o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们可以用下式来选择最有可能的类别:
a r g m a x j y ^ j = a r g m a x j o j argmax_j\hat{y}_j=argmax_jo_j argmaxjy^j=argmaxjoj
尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型。

小批量样本的矢量化

为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。假设我们读取了一个批量的样本X,其中特征维度(输入数量)为d,批量大小为n。此外,假设我们在输出中有q个类别。那么:
小批量样本的特征为 X ∈ R n × d 权重为 W ∈ R d × q 偏置为 b ∈ R 1 × q 小批量样本的特征为X∈R^{n×d}\\ 权重为W∈R^{d×q}\\ 偏置为b∈R^{1×q} 小批量样本的特征为XRn×d权重为WRd×q偏置为bR1×q
softmax回归的矢量计算表达式为:
O = X W + b Y ^ = s o f t m a x ( O ) O=XW+b\\ \hat{Y}=softmax(O) O=XW+bY^=softmax(O)
小批量样本的矢量化加快了X和W的矩阵-向量乘法。
由于X中的每一行代表一个数据样本,那么softmax运算可以按行执行:对于O的每一行,我们先对所有项进行幂运算,然后通过求和来对他们进行标准化。(XW+b的求和会使用广播机制,小批量的未规范化预测和输出概率都是n×q的矩阵)。

相关文章:

机器学习深度学习——softmax回归(上)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——线性回归的简洁实现 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所…...

基于express调用chatgpt文字流输出和有道智云语音合成

express是基于node.js的一个web框架,可以更加简洁的去创建一个后台服务,由于项目的需要,引入和typescript,经过几天的努力实现了chatgpt文字流输出有道智云语音合成的结合(略有遗憾),下面我记载…...

(学习笔记-内存管理)内存分段、分页、管理与布局

内存分段 程序是由若干个逻辑分段组成的,比如可由代码分段、数据分段、栈段、堆段组成。不同的段是有不同的属性的,所以就用分段的形式把这些分段分离出来。 分段机制下,虚拟地址和物理地址是如何映射的? 分段机制下的虚拟地址由…...

PHP使用Redis实战实录1:宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案

宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案 前言一、Redis安装部署1.安装Redis2.php安装Redis扩展3.启动Redis 二、避坑指南1.6379端口配置2.Redis服务启动(1)Redis服务启动失败(2)Redis启动日志排查(3&a…...

【数据结构】这堆是什么

目录 1.二叉树的顺序结构 2.堆的概念及结构 3.堆的实现 3.1 向上调整算法与向下调整算法 3.2 堆的创建 3.3 建堆的空间复杂度 3.4 堆的插入 3.5 堆的删除 3.6 堆的代码的实现 4.堆的应用 4.1 堆排序 4.2 TOP-K问题 首先,堆是一种数据结构,一种特…...

FFmpeg 音视频开发工具

目录 FFmpeg 下载与安装 ffmpeg 使用快速入门 ffplay 使用快速入门 FFmpeg 全套下载与安装 1、FFmpeg 是处理音频、视频、字幕和相关元数据等多媒体内容的库和工具的集合。一个完整的跨平台解决方案,用于录制、转换和流式传输音频和视频。 官网:http…...

Go 语言 select 都能做什么?

原文链接: Go 语言 select 都能做什么? 在 Go 语言中,select 是一个关键字,用于监听和 channel 有关的 IO 操作。 通过 select 语句,我们可以同时监听多个 channel,并在其中任意一个 channel 就绪时进行相…...

Hive之窗口函数lag()/lead()

一、函数介绍 lag()与lead函数是跟偏移量相关的两个分析函数 通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤,该操作可代替表的自联接,且效率更高 lag()/lead() lag(c…...

Vite+Typescript+Vue3学习笔记

ViteTypescriptVue3学习笔记 1、项目搭建 1.1、创建项目(yarn) D:\WebstromProject>yarn create vite yarn create v1.22.19 [1/4] Resolving packages... [2/4] Fetching packages... [3/4] Linking dependencies... [4/4] Building fresh packages...success Installed…...

二、SQL-6.DCL-2).权限控制

*是数据库和表的通配符,出现在数据库位置上表示所有数据库,出现在表名位置上,表示所有表 %是主机名的通配符,表示所有主机。 e.g.所有数据库(*)的所有表(*)的所有权限(a…...

[OpenStack] GPU透传

GPU透传本质就是PCI设备透传,不算是什么新技术。之前按照网上方法都没啥问题,但是这次测试NVIDIA A100遇到坑了。 首先是禁用nouveau 把intel_iommuon rdblacklistnouveau写入/etc/default/grub的cmdline,然后grub2-mkconfig -o /etc/grub2.c…...

无涯教程-jQuery - Progressbar组件函数

小部件进度条功能可与JqueryUI中的小部件一起使用。一个简单的进度条显示有关进度的信息。一个简单的进度条如下所示。 Progressbar - 语法 $( "#progressbar" ).progressbar({value: 37 }); Progressbar - 示例 以下是显示进度条用法的简单示例- <!doctype …...

[SQL挖掘机] - 窗口函数 - rank

介绍: rank() 是一种常用的窗口函数&#xff0c;它为结果集中的每一行分配一个排名&#xff08;rank&#xff09;。这个排名基于指定的排序顺序&#xff0c;并且在遇到相同的值时&#xff0c;会跳过相同的排名。 用法: rank() 函数的语法如下&#xff1a; rank() over ([pa…...

VBAC多层防火墙技术的研究-状态检测

黑客技术的提升和黑客工具的泛滥,造成大量的企业、机构和个人的电脑系统遭受程度不同的入侵和攻击,或面临随时被攻击的危险。迫使大家不得不加强对自身电脑网络系统的安全防护,根据系统管理者设定的安全规则把守企业网络,提供强大的、应用选通、信息过滤、流量控制、网络侦…...

PHP8的数据类型-PHP8知识详解

在PHP8中&#xff0c;变量不需要事先声明&#xff0c;赋值即声明。 不同的数据类型其实就是所储存数据的不同种类。在PHP8.0、8.1中都有所增加。以下是PHP8的15种数据类型&#xff1a; 1、字符串&#xff08;String&#xff09;&#xff1a;用于存储文本数据&#xff0c;可以使…...

明晚直播:可重构计算芯片的AI创新应用分享!

大模型技术的不断升级及应用落地&#xff0c;正在推动人工智能技术发展进入新的阶段&#xff0c;而智能化快速增长和发展的市场对芯片提出了更高的要求&#xff1a;高算力、高性能、灵活性、安全性。可重构计算区别于传统CPU、GPU&#xff0c;以指令驱动的串行执行方式&#xf…...

flask 点赞系统

dianzan.html页面 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>点赞系统</title> </head> <body><h2>这是一个点赞系统</h2><table border"1"><…...

关于Java的多线程实现

多线程介绍 进程&#xff1a;进程指正在运行的程序。确切的来说&#xff0c;当一个程序进入内存运行&#xff0c;即变成一个进程&#xff0c;进程是处于运行过程中的程序&#xff0c;并且具有一定独立功能。 线程&#xff1a;线程是进程中的一个执行单元&#xff0c;负责当前进…...

如何判断某个视频是深度伪造的?

目录 一、前言 二、仔细检查面部动作 三、声音可以提供线索 四、观察视频中人物的身体姿势 五、小心无意义的词语 深造伪造危险吗&#xff1f; 一、前言 制作深度伪造视频就像在Word文档中编辑文本一样简单。换句话说&#xff0c;您可以拍下任何人的视频&#xff0c;让他…...

ESP32(MicroPython) 四足机器人(一)

最近决定研究一下四足机器人&#xff0c;但市面上的产品&#xff0c;要么性价比低&#xff0c;要么性能达不到要求。本人就另外买了零件&#xff0c;安装到之前的一个麦克纳姆轮底盘的底板上。&#xff08;轮子作为装饰&#xff0c;使用铜柱固定&#xff09; 舵机使用MG996R&a…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...