机器学习深度学习——softmax回归(上)
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——线性回归的简洁实现
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助
softmax回归
- 分类问题
- 网络架构
- 全连接层的参数开销
- softmax运算
- 小批量样本的矢量化
回归可以用来预测多少的问题,比如房屋被售出价格。而除了预测,我们也对分类问题感兴趣,不是问“多少”,而是问“哪一个”。如:“某个邮件是否是垃圾邮件?图像描绘的是什么动物?某人接下来最可能看哪部电影?”
分类问题
以图像分类为例,每次输入一个2×2的灰度图像,可以用一个标量表示每个像素值,每个图像对应四个特征x1、x2、x3、x4。假设每个图像属于类别“猫”“鸡”和“狗”中的一个。
接下来要选择如何表示标签,最直接的想法是选择y∈{1,2,3}分别代表{狗,猫,鸡}。
如果类别间有一些自然顺序,比如我们要试图预测{婴儿,儿童,青少年,青年人,中年人,老年人},那么该问题就会转变为回归问题。但一般的分类问题和类别之间的自然顺序是无关的。
独热编码
独热编码是一个向量,它的分量与类别是一样多的。类别对应的分量设置为1,其它所有分量设置为0,如:
y∈{(1,0,0),(0,1,0),(0,0,1)}分别代表三类动物。
网络架构
要解决线性模型的分类问题,需要设置和输出一样多的仿射函数,在上面的问题中,我们有4个特征和3个可能的输出类别,所以我们需要用12个标量来表示权重,3个标量来表示偏置(带下标的b):
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 o 2 = x 2 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 o 1 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 o_1=x_1w_{11}+x_2w_{12}+x_3w_{13}+x_4w_{14}+b_1\\ o_2=x_2w_{21}+x_2w_{22}+x_3w_{23}+x_4w_{24}+b_2\\ o_1=x_1w_{31}+x_2w_{32}+x_3w_{33}+x_4w_{34}+b_3 o1=x1w11+x2w12+x3w13+x4w14+b1o2=x2w21+x2w22+x3w23+x4w24+b2o1=x1w31+x2w32+x3w33+x4w34+b3
其中o表示未规范化的预测。
我们可以用神经网络图来描述这个计算过程,显然softmax回归也是个单层神经网络。由于输出取决于所有的输入,所以softmax回归的输出层也是全连接层
可以用o=Wx+b来表示模型。
全连接层的参数开销
全连接层无处不在,对于任何具有d个输入和q个输出的全连接层,参数开销为:
O ( d q ) O(dq) O(dq)
这个数字还是太大了,但将d个输入转换为q个输出的成本可以减少到:
O ( d q n ) O(\frac{dq}{n}) O(ndq)
超参数n可以由我们灵活指定。
softmax运算
现在我们将优化参数以最大化观测数据的概率。为了得到预测结果,我们设置一个阈值,如选择具有最大概率的标签。
我们希望模型输出三个类的概率,然后选用最大输出值来作为我们的预测。
但我们不能将未规范化的预测o直接视作我们感兴趣的输出。因为将线性层的输出直接视为概率时会存在一些问题:
1、我们没有限制这些输出数字的总和为1。
2、根据输入的不同,它们可以为负值,违背了概率基本公理。
要将输出视为概率,必须保证在任何数据上的输出都是非负的且总和为1。此外,需要训练一个目标函数,来激励模型精准的估计概率。例如,在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。这个属性叫做校准。
而softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们让每个求幂后的结果除以它们的总和:
y ^ = s o f t m a x ( o ) ,其中 y ^ j = e x p ( o j ) ∑ k e x p ( o k ) \hat{y}=softmax(o),其中\hat{y}_j=\frac{exp(o_j)}{\sum_kexp(o_k)} y^=softmax(o),其中y^j=∑kexp(ok)exp(oj)
这里,对于所有的j,总有:
0 ≤ y ^ j ≤ 1 0≤\hat{y}_j≤1 0≤y^j≤1
因此,y hat可以视为一个正确的概率分布。
softmax运算不会改变未规范化的预测o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们可以用下式来选择最有可能的类别:
a r g m a x j y ^ j = a r g m a x j o j argmax_j\hat{y}_j=argmax_jo_j argmaxjy^j=argmaxjoj
尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型。
小批量样本的矢量化
为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。假设我们读取了一个批量的样本X,其中特征维度(输入数量)为d,批量大小为n。此外,假设我们在输出中有q个类别。那么:
小批量样本的特征为 X ∈ R n × d 权重为 W ∈ R d × q 偏置为 b ∈ R 1 × q 小批量样本的特征为X∈R^{n×d}\\ 权重为W∈R^{d×q}\\ 偏置为b∈R^{1×q} 小批量样本的特征为X∈Rn×d权重为W∈Rd×q偏置为b∈R1×q
softmax回归的矢量计算表达式为:
O = X W + b Y ^ = s o f t m a x ( O ) O=XW+b\\ \hat{Y}=softmax(O) O=XW+bY^=softmax(O)
小批量样本的矢量化加快了X和W的矩阵-向量乘法。
由于X中的每一行代表一个数据样本,那么softmax运算可以按行执行:对于O的每一行,我们先对所有项进行幂运算,然后通过求和来对他们进行标准化。(XW+b的求和会使用广播机制,小批量的未规范化预测和输出概率都是n×q的矩阵)。
相关文章:

机器学习深度学习——softmax回归(上)
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——线性回归的简洁实现 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所…...
基于express调用chatgpt文字流输出和有道智云语音合成
express是基于node.js的一个web框架,可以更加简洁的去创建一个后台服务,由于项目的需要,引入和typescript,经过几天的努力实现了chatgpt文字流输出有道智云语音合成的结合(略有遗憾),下面我记载…...

(学习笔记-内存管理)内存分段、分页、管理与布局
内存分段 程序是由若干个逻辑分段组成的,比如可由代码分段、数据分段、栈段、堆段组成。不同的段是有不同的属性的,所以就用分段的形式把这些分段分离出来。 分段机制下,虚拟地址和物理地址是如何映射的? 分段机制下的虚拟地址由…...

PHP使用Redis实战实录1:宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案
宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案 前言一、Redis安装部署1.安装Redis2.php安装Redis扩展3.启动Redis 二、避坑指南1.6379端口配置2.Redis服务启动(1)Redis服务启动失败(2)Redis启动日志排查(3&a…...

【数据结构】这堆是什么
目录 1.二叉树的顺序结构 2.堆的概念及结构 3.堆的实现 3.1 向上调整算法与向下调整算法 3.2 堆的创建 3.3 建堆的空间复杂度 3.4 堆的插入 3.5 堆的删除 3.6 堆的代码的实现 4.堆的应用 4.1 堆排序 4.2 TOP-K问题 首先,堆是一种数据结构,一种特…...

FFmpeg 音视频开发工具
目录 FFmpeg 下载与安装 ffmpeg 使用快速入门 ffplay 使用快速入门 FFmpeg 全套下载与安装 1、FFmpeg 是处理音频、视频、字幕和相关元数据等多媒体内容的库和工具的集合。一个完整的跨平台解决方案,用于录制、转换和流式传输音频和视频。 官网:http…...
Go 语言 select 都能做什么?
原文链接: Go 语言 select 都能做什么? 在 Go 语言中,select 是一个关键字,用于监听和 channel 有关的 IO 操作。 通过 select 语句,我们可以同时监听多个 channel,并在其中任意一个 channel 就绪时进行相…...

Hive之窗口函数lag()/lead()
一、函数介绍 lag()与lead函数是跟偏移量相关的两个分析函数 通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤,该操作可代替表的自联接,且效率更高 lag()/lead() lag(c…...

Vite+Typescript+Vue3学习笔记
ViteTypescriptVue3学习笔记 1、项目搭建 1.1、创建项目(yarn) D:\WebstromProject>yarn create vite yarn create v1.22.19 [1/4] Resolving packages... [2/4] Fetching packages... [3/4] Linking dependencies... [4/4] Building fresh packages...success Installed…...

二、SQL-6.DCL-2).权限控制
*是数据库和表的通配符,出现在数据库位置上表示所有数据库,出现在表名位置上,表示所有表 %是主机名的通配符,表示所有主机。 e.g.所有数据库(*)的所有表(*)的所有权限(a…...
[OpenStack] GPU透传
GPU透传本质就是PCI设备透传,不算是什么新技术。之前按照网上方法都没啥问题,但是这次测试NVIDIA A100遇到坑了。 首先是禁用nouveau 把intel_iommuon rdblacklistnouveau写入/etc/default/grub的cmdline,然后grub2-mkconfig -o /etc/grub2.c…...

无涯教程-jQuery - Progressbar组件函数
小部件进度条功能可与JqueryUI中的小部件一起使用。一个简单的进度条显示有关进度的信息。一个简单的进度条如下所示。 Progressbar - 语法 $( "#progressbar" ).progressbar({value: 37 }); Progressbar - 示例 以下是显示进度条用法的简单示例- <!doctype …...
[SQL挖掘机] - 窗口函数 - rank
介绍: rank() 是一种常用的窗口函数,它为结果集中的每一行分配一个排名(rank)。这个排名基于指定的排序顺序,并且在遇到相同的值时,会跳过相同的排名。 用法: rank() 函数的语法如下: rank() over ([pa…...
VBAC多层防火墙技术的研究-状态检测
黑客技术的提升和黑客工具的泛滥,造成大量的企业、机构和个人的电脑系统遭受程度不同的入侵和攻击,或面临随时被攻击的危险。迫使大家不得不加强对自身电脑网络系统的安全防护,根据系统管理者设定的安全规则把守企业网络,提供强大的、应用选通、信息过滤、流量控制、网络侦…...

PHP8的数据类型-PHP8知识详解
在PHP8中,变量不需要事先声明,赋值即声明。 不同的数据类型其实就是所储存数据的不同种类。在PHP8.0、8.1中都有所增加。以下是PHP8的15种数据类型: 1、字符串(String):用于存储文本数据,可以使…...

明晚直播:可重构计算芯片的AI创新应用分享!
大模型技术的不断升级及应用落地,正在推动人工智能技术发展进入新的阶段,而智能化快速增长和发展的市场对芯片提出了更高的要求:高算力、高性能、灵活性、安全性。可重构计算区别于传统CPU、GPU,以指令驱动的串行执行方式…...

flask 点赞系统
dianzan.html页面 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>点赞系统</title> </head> <body><h2>这是一个点赞系统</h2><table border"1"><…...

关于Java的多线程实现
多线程介绍 进程:进程指正在运行的程序。确切的来说,当一个程序进入内存运行,即变成一个进程,进程是处于运行过程中的程序,并且具有一定独立功能。 线程:线程是进程中的一个执行单元,负责当前进…...

如何判断某个视频是深度伪造的?
目录 一、前言 二、仔细检查面部动作 三、声音可以提供线索 四、观察视频中人物的身体姿势 五、小心无意义的词语 深造伪造危险吗? 一、前言 制作深度伪造视频就像在Word文档中编辑文本一样简单。换句话说,您可以拍下任何人的视频,让他…...

ESP32(MicroPython) 四足机器人(一)
最近决定研究一下四足机器人,但市面上的产品,要么性价比低,要么性能达不到要求。本人就另外买了零件,安装到之前的一个麦克纳姆轮底盘的底板上。(轮子作为装饰,使用铜柱固定) 舵机使用MG996R&a…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...

Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...