当前位置: 首页 > news >正文

数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n-1 \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U}

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在唯一的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U},并且\left |A \right |=U\left ( 1,1 \right )U\left ( 2,2 \right )\cdots U\left ( n,n \right )

0.2 Cholesky分解

\boldsymbol{A}\in \mathbb{R}^{n\times n}对称正定,则存在一个对角元均为正数的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{L}^{T}

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n}\boldsymbol{b}\in \mathbb{R}^{n},使用迭代法求解线性方程组\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}过程中,一般需要以下流程进行:

  1. 给定一个初始向量\boldsymbol{x}_{0}
  2. 构造一个递推公式\boldsymbol{x}_{k+1}=\boldsymbol{f}\left ( \boldsymbol{x}_{k},\boldsymbol{A},\mathbf{b} \right )
  3. 不断递推\boldsymbol{x}_{k+1},使其近似收敛于\boldsymbol{x}_{*}

下表列出了若干迭代算法的迭代公式。

方法\boldsymbol{A}迭代公式备注
Jacobi迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\boldsymbol{D}^{-1}\left ( \boldsymbol{L}+\boldsymbol{U} \right ) \boldsymbol{x}_{k-1}+\boldsymbol{D}^{-1}\boldsymbol{b}
Gausss-Seidel迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\left ( \boldsymbol{D}-\boldsymbol{L }\right )^{-1}\boldsymbol{U}\boldsymbol{x}_{k-1}+\left ( \boldsymbol{D}-\boldsymbol{L} \right )^{-1}b
SOR迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{L}_{\omega }=\left ( \boldsymbol{D}-\omega \boldsymbol{L}\right )^{-1} \left ( \left ( 1-\omega \right )\boldsymbol{D}+\omega \boldsymbol{U} \right )\\ \boldsymbol{x}_{k+1}= \boldsymbol{L}_{\omega }\boldsymbol{x}_{k}+\omega \left ( \boldsymbol{D}-\omega \boldsymbol{L} \right )^{-1}\boldsymbol{b}
Steepest Descent对称正定\boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}
Conjugate Gradient对称正定

k=1

     \boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}

k>1

    \alpha _{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k} \\ \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha _{k}\boldsymbol{A}\boldsymbol{p}_{k} \\ \beta _{k}=\frac{\boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1}}{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}\\ \boldsymbol{p}_{k+1}=\boldsymbol{r}_{k+1}+\beta _{k}\boldsymbol{p}_{k}

二、Projection Method

投影法将线性方程组求解问题转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x},构造列满秩矩阵\mathcal{K}\in \mathbb{R}^{n\times m}\mathcal{L}\in \mathbb{R}^{n\times m},寻找\boldsymbol{\tilde{x}}\in\mathcal{K},满足Petrov-Galerkin条件,即\forall \boldsymbol{y}\in \mathcal{L},均有\mathcal{L}^{T}\left ( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\tilde{x}} \right )=\boldsymbol{0}\mathcal{K}称为搜索空间,\mathcal{L}称为约束空间。若\mathcal{L}=\mathcal{K}时,称为正投影算法,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法本质上也是一种投影法,其核心思想是在更小维度的Krylov子空间内寻找满足精度要求的近似解。即令\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}_{0},构造了mKrylov子空间\mathcal{K}\left ( \boldsymbol{A},\boldsymbol{r}_{0} \right )=span\left ( \boldsymbol{r}_{0} , \boldsymbol{A}\boldsymbol{r}_{0}, \boldsymbol{A}^{2} \boldsymbol{r}_{0},\cdots ,\boldsymbol{A}^{m-1}\boldsymbol{r}_{0} \right ),使得\mathcal{L}^{T}\left (\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \right )=\boldsymbol{0}

选择不同的\mathcal{L},就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

3.3 Preconditioned Conjugate Gradient

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版).  北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952. 

相关文章:

数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。 零、预修 0.1 LU分解 设,若对于,均有,则存在下三角矩阵和上三角矩阵,使得。 设,若对于,均有,则存在唯一的下三…...

【JVM】详解对象的创建过程

文章目录 1、创建对像的几种方式1、new关键字2、反射3、clone4、反序列化 2、创建过程步骤 1、检查类是否已经被加载步骤 2、 为对象分配内存空间1、指针碰撞针对指针碰撞线程不安全,有两种方案: 2、空闲列表选择哪种分配方式 步骤3、将内存空间初始化为…...

华纳云:ubuntu下如何搭建nfs服务

在Ubuntu下搭建NFS(Network File System)服务,可以实现网络文件共享。以下是在Ubuntu上搭建NFS服务的步骤: 安装NFS服务器和客户端软件: 打开终端,并使用以下命令安装NFS服务器和客户端软件: sudo apt-get update s…...

HCIA实验二

实验要求: 1.R2为ISP,只能配置IP 2.R1-R2之间为HDLC封装 3.R2-R3之间为PPP封装,pap认证,R2为主认证方 4.R2-R4之间为PPP封装,chap认证,R2为主认证方 5.R1、R2、R3构建MGRE,仅R1的IP地址固定…...

stm32 舵机 cubemx

文章目录 前言一、cubemx配置二、代码1.serve.c2.serve.h3.主函数 总结 前言 stm32对舵机进行控制,很简单直接一个pwm就可以实现 pwm的周期是50HZ占空比分别对应 一个0.5ms的高电平对应于0度 一个1.5ms的高电平对应于90度 一个2.5ms的高电平对应于180度 因此&#…...

无涯教程-jQuery - Spinner组件函数

Widget Spinner 函数可与JqueryUI中的窗口小部件一起使用。Spinner提供了一种从一组中选择一个值的快速方法。 Spinner - 语法 $( "#menu" ).selectmenu(); Spinner - 示例 以下是显示Spinner用法的简单示例- <!doctype html> <html lang"en"…...

Python 有趣的模块之pynupt——通过pynput控制鼠标和键盘

Python 有趣的模块之pynupt ——通过pynput控制鼠标和键盘 文章目录 Python 有趣的模块之pynupt ——通过pynput控制鼠标和键盘1️⃣简介2️⃣鼠标控制与移动3️⃣键盘控制与输入4️⃣结语&#x1f4e2; 1️⃣简介 &#x1f680;&#x1f680;&#x1f680;学会控制鼠标和键盘是…...

docker基于centos7镜像安装python3.7.9

下载centos7镜像 docker pull centos&#xff1a;centos7 启动容器centos-python-3.7 docker run -itd --name centos-python-3.7 -p 60021:22 --privileged centos:centos7 /usr/sbin/init 进入容器 docker exec -it centos-python-3.7 /bin/bash centos7环境下安装python3.7.…...

JavaScript中的switch语句

switch语句和if语句一样&#xff0c;同样是运用于条件循环中&#xff1b; 下面例子我们用switch实现 例如如果今天是周一就学习HTML&#xff0c;周二学习CSS和JavaScript&#xff0c;周三学习vue&#xff0c;周四&#xff0c;周五学习node.js&#xff0c;周六周日快乐玩耍&…...

Jquery笔记

DOM对象通过jquery获取 所有的代码都是基于引入jquery.js文件 var mydiv $(#div);//直接获取到DOM对象元素id var mydiv$(.div)&#xff1b;//通过class获取DOM对象&#xff0c;如果有同名class只会获取第一个 var mysapn$(span);//通过元素的标签名获取DOM对象 var divarr$(…...

【C++】优先级队列的基本概念以及其模拟实现

文章目录 补充知识&#xff1a;仿函数一、优先级队列&#xff1a;1.引入2.介绍 二、priority_queue的模拟实现1.大体框架2.私有成员函数&#xff1a;1.向下调整&#xff08;AdjustDown&#xff09;2.向上调整&#xff08;AdjustUp&#xff09; 3.公有成员函数1大小&#xff08;…...

TextClamp for Vue3.0(Vue3.0的文本展开收起组件)

呦&#xff01;大家好&#xff0c;好久没有更新博客了&#xff0c;最近实现了一个一直想自己完成的一个东西&#xff0c;就是文本的展开收起组件&#xff0c;以前项目需要用到&#xff0c;自己实现一个又太繁琐&#xff0c;所以那个时候都是用的别人的轮子&#xff0c;现在自己…...

区间预测 | MATLAB实现VAR向量自回归时间序列区间预测

区间预测 | MATLAB实现VAR向量自回归时间序列区间预测 目录 区间预测 | MATLAB实现VAR向量自回归时间序列区间预测预测效果基本介绍程序设计参考资料预测效果 基本介绍 区间预测 | MATLAB实现VAR向量自回归时间序列区间预测 VAR(Vector Autoregression)模型是一种广泛应用于时…...

在 Windows 上搭建 NTP 服务器

文章目录 一、基础环境二、适用场景三、操作步骤四、常用的NTP服务器五、参考资料 版权声明&#xff1a;本文为博主原创文章&#xff0c;于2023年7月30日首发于CSDN&#xff0c;转载请附上原文出处链接和本声明。本文链接&#xff1a;https://blog.csdn.net/u011046671 一、基础…...

应急响应经典案例-FTP 暴力破解

应急响应经典案例-FTP 暴力破解 应急场景日志分析应急处理措施 应急场景 从昨天开始&#xff0c;网站响应速度变得缓慢&#xff0c;网站服务器登录上去非常卡&#xff0c;重启服务器就能保证一段时间的正常访问&#xff0c;网站响应状态时而飞快时而缓慢&#xff0c;多数时间是…...

41. linux通过yum安装postgresql

文章目录 1.下载安装包2.关闭内置PostgreSQL模块:3.安装postgresql服务:4.初始化postgresql数据库:5.设置开机自启动:6.启动postgresql数据库7.查看postgresql进程8.通过netstat命令或者lsof 监听默认端口54329.使用find命令查找了一下postgresql.conf的配置位置10.修改postgre…...

SpringBoot启动流程及自动配置

SpringBoot启动流程源码&#xff1a; 1、启动SpringBoot启动类SpringbootdemoApplication中的main方法。 SpringBootApplication public class SpringbootdemoApplication {public static void main(String[] args) {SpringApplication.run(SpringbootdemoApplication.class, …...

【Linux】进程轻松入门

目录 一&#xff0c; 冯* 诺依曼体系结构 1&#xff0c;存储结构 ​编辑 二&#xff0c; 操作系统 1&#xff0c;概念 2&#xff0c;设计OS的目的 3&#xff0c;定位 4&#xff0c;如何理解 "管理" 5&#xff0c; 总结 三&#xff0c;进程 1. 概念 那么…...

【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Tomcat 安装配置教程及成功后,启动失败报错解决方案

解决方案 我的报错原因是因为我的JDK是1.8的而我的Tomcat是10版本的&#xff0c;可能是因为版本原因吧&#xff0c;我重新装了Tomcat 9就可以启动成功了&#xff01; 简单说下安装的时候需要注意哪些步骤吧 今天我在安装tomcat10的时候&#xff0c;安装成功后&#xff0c;启…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...