当前位置: 首页 > news >正文

【雕爷学编程】MicroPython动手做(18)——掌控板之声光传感器

知识点:什么是掌控板?
掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED显示屏、RGB灯、加速度计、麦克风、光线传感器、蜂鸣器、按键开关、触摸开关、金手指外部拓展接口,支持图形化及MicroPython代码编程,可实现智能机器人、创客智造作品等智能控制类应用。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

掌控板硬件特性:
ESP-32主控
处理器:Tensilica LX6双核处理器(一核处理高速连接;一核独立应用开发)
主频:高达240MHz的时钟频率
SRAM:520KB
Flash:8MB
Wi-Fi标准:FCC/CE/TELEC/KCC
Wi-Fi协议:802.11 b/g/n/d/e/i/k/r (802.11n,速度高达150 Mbps),A-MPDU和A-MSDU聚合,支持0.4us防护间隔
频率范围:2.4~2.5 GHz
蓝牙协议:符合蓝牙v4.2 BR/EDR和BLE标准
蓝牙音频:CVSD和SBC音频低功耗:10uA
供电方式:Micro USB供电
工作电压:3.3V
最大工作电流:200mA
最大负载电流:1000mA
掌控板载
三轴加速度计MSA300,测量范围:±2/4/8/16G
地磁传感器MMC5983MA,测量范围:±8 Gauss;精度0.4mGz,电子罗盘误差±0.5°
光线传感器
麦克风
3 颗全彩ws2812灯珠
1.3英寸OLED显示屏,支持16*16字符显示,分辨率128x64
无源蜂鸣器
支持2个物理按键(A/B)、6个触摸按键
支持1路鳄鱼夹接口,可方便接入各种阻性传感器
拓展接口
20通道数字I/O, (其中支持12路PWM,6路触摸输入)
5通道12bit模拟输入ADC,P0~P4
1路的外部输入鳄鱼夹接口:EXT/GND
支持I2C、UART、SPI通讯协议

在这里插入图片描述
在这里插入图片描述
麦克风、光线传感器
掌控板板载麦克风,可以用其感知周边环境的声音变化。
掌控板板载光线传感器,可以用其感知周边环境的光线变化。
侦测范围的值是0-4095。

在这里插入图片描述

1、麦克风
学名为传声器,由英语microphone(送话器)翻译而来,也称话筒,微音器。麦克风是将声音信号转换为电信号的能量转换器件。分类有动圈式、电容式、驻极体和最近新兴的硅微传声器,此外还有液体传声器和激光传声器。大多数麦克风都是驻极体电容器麦克风,其的工作原理是利用具有永久电荷隔离的聚合材料振动膜 。

大多数麦克风都是驻极体电容器麦克风(ECM),这种技术已经有几十年的历史。ECM 的工作原理是利用具有永久电荷隔离的聚合材料振动膜。与ECM的聚合材料振动膜相比,MEMS麦克风在不同温度下的性能都十分稳定,不会受温度、振动、湿度和时间的影响。由于耐热性强,MEMS麦克风可承受260℃的高温回流焊,而性能不会有任何变化。由于组装前后敏感性变化很小,这甚至可以节省制造过程中的音频调试成本。目前,集成电路工艺正越来越广泛地被应用在传感器及传感器接口集成电路的制造中。这种微制造工艺具有精确、设计灵活、尺寸微型化、可与信号处理电路集成、低成本、大批量生产的优点。早期微型麦克风是基于压阻效应的,有研究报道称,制作了以(1×1)cm2、2μm厚的多晶硅膜为敏感膜的麦克风。但是,在敏感膜内不存在应力的情况下,这样大并且很薄的多晶硅膜的一阶谐振频率将低于300Hz。一阶谐振频率在这样低的频段范围内将导致麦克风在听觉频率范围内的频率响应极不均匀(灵敏度的变化量大于40dB),这对于麦克风应用是不可接受的。当敏感膜内存在张应力时,其谐振频率将增大,却以牺牲灵敏度为代价。当然,可以通过调整敏感膜的尺寸来获得更高的一阶谐振频率,但是这仍将减小灵敏度。由此可见,压阻式方案并不适于微型麦克风的制造 。

一种可行的解决方案就是采用电容式方案,来制造微型麦克风。这一方法的优点就是:在集成电路制造工艺中使用的所有材料都可用于传感器的制造。但是采用单芯片工艺制造微麦克风有相当难度,因为在两个电容极板之间的空气介质只能有很小的间隔。而且,由于尺寸的限制,在一些应用场合偏置电压很难满足。基于上述问题,对于电容式麦克风的研究一直没有间断过。

在这里插入图片描述

2、光电传感器
是将光信号转换为电信号的一种器件。其工作原理基于光电效应。光电效应是指光照射在某些物质上时,物质的电子吸收光子的能量而发生了相应的电效应现象。根据光电效应现象的不同将光电效应分为三类:外光电效应、内光电效应及光生伏特效应。光电器件有光电管、光电倍增管、光敏电阻、光敏二极管、光敏三极管、光电池等。分析了光电器件的性能、特性曲线。

光电传感器一般由处理通路和处理元件2 部分组成。其基本原理是以光电效应为基础,把被测量的变化转换成光信号的变化,然后借助光电元件进一步将非电信号转换成电信号。光电效应是指用光照射某一物体,可以看作是一连串带有一定能量为的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应。通常把光电效应分为3 类:(1 )在光线作用下能使电子逸出物体表面的现象称为外光电效应,如光电管、光电倍增管等;(2 )在光线作用下能使物体的电阻率改变的现象称为内光电效应,如光敏电阻、光敏晶体管等;(3 )在光线作用下,物体产生一定方向电动势的现象称为光生伏特效应,如光电池等。

光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。

在这里插入图片描述
3、OLED显示光线与声音数值

#MicroPython动手做(18)——掌控板之声光传感器
#OLED显示光线与声音数值from mpython import *import time
while True:oled.fill(0)oled.DispChar('声音值为', 40, 11, 1)oled.DispChar((str(sound.read())), 55, 22, 1)oled.DispChar('光线值为', 40, 33, 1)oled.DispChar((str(light.read())), 53, 44, 1)oled.show()time.sleep(1)

使用前,导入mpython模块
from mpython import *

我们用 sound.read() 获取麦克风的数据。
sound.read()

注解
麦克风使用 read() 函数来读取数据。返回的值为12bit的ADC采样数据,即最大值为十进制4095。

使用 light 对象来获取光线传感器数据:
light.read()

注解
光线传感器使用 read() 函数来读取数据。返回的值为12bit的ADC采样数据,即最大值为十进制4095。

mPython 图形编程
在这里插入图片描述
在这里插入图片描述

4、光控开关(光线值小于300红灯亮)

#MicroPython动手做(18)——掌控板之声光传感器
#光控开关(光线值小于300红灯亮)from mpython import *import time
while True:oled.fill(0)oled.DispChar('光线值', 46, 22, 1)oled.DispChar((str(light.read())), 55, 33, 1)oled.show()time.sleep_ms(100)if light.read() < 300:rgb.fill( (int(120), int(0), int(0)) )rgb.write()time.sleep_ms(1)time.sleep_ms(100)else:rgb.fill( (int(0), int(100), int(0)) )rgb.write()time.sleep_ms(1)time.sleep_ms(100)

mPython 图形编程

在这里插入图片描述
在这里插入图片描述

5、简易光强度测量仪

#MicroPython动手做(18)——掌控板之声光传感器
#简易光强度测量仪from mpython import *myUI = UI(oled)
while True:oled.fill(0)i = ((100 - 0) / (4095 - 0)) * (light.read() - 0) + 0oled.DispChar('光强度', 25, 10, 1)oled.DispChar((str(light.read())), 73, 10, 1)myUI.stripBar(10, 32, 105, 10, i, 1, 1)oled.show()

mPython 图形编程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

【雕爷学编程】MicroPython动手做(18)——掌控板之声光传感器

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…...

Ribbon源码

学了feign源码之后感觉&#xff0c;这部分还是按运行流程分块学合适。核心组件什么的&#xff0c;当专业术语学妥了。序章&#xff1a;认识真正のRibbon 但只用认识一点点 之前我们学习Ribbon的简单使用时&#xff0c;都是集成了Eureka-client或者Feign等组件&#xff0c;甚至在…...

Linux下在终端输入密码隐藏方法

Linux系统中&#xff0c;如何将在终端输入密码时将密码隐藏&#xff1f; 最近做简单的登录界面时&#xff0c;不做任何操作的话&#xff0c;在终端输入密码的同时也会显示输入的密码是什么&#xff0c;这样对于隐蔽性和使用都有不好的体验。那么我就想到将密码用字符*隐藏起来…...

【ARM 常见汇编指令学习 3 -- ARM64 无符号位域提取指令 UBFX】

文章目录 ARM64 无符号位域提取指令 上篇文章&#xff1a;ARM 常见汇编指令学习 2 – 存储指令 STP 与 LDP 下篇文章&#xff1a;ARM 常见汇编指令学习 4 – ARM64 比较指令 cbnz 与 b.ne 区别 ARM64 无符号位域提取指令 在代码中如何监控寄存器的某1bit&#xff0c; 或者某几…...

求分享如何批量压缩视频的容量的方法

视频内存过大&#xff0c;不但特别占内存&#xff0c;而且还会使手机电脑出现卡顿的现象&#xff0c;除此之外&#xff0c;如果我们想发送这些视频文件可能还会因为内存太大无法发送。因此&#xff0c;我们可以批量地压缩视频文件的内存大小&#xff0c;今天小编要来分享一招&a…...

ChatGPT 是如何工作的:从预训练到 RLHF

欢迎来到人工智能的未来&#xff1a;生成式人工智能&#xff01;您是否想知道机器如何学习理解人类语言并做出相应的反应&#xff1f;让我们来看看ChatGPT ——OpenAI 开发的革命性语言模型。凭借其突破性的 GPT-3.5 架构&#xff0c;ChatGPT 席卷了世界&#xff0c;改变了我们…...

KafKa脚本操作

所有操作位于/usr/local/kafka_2.12-3.5.1/bin。 rootubuntu2203:/usr/local/kafka_2.12-3.5.1/bin# pwd /usr/local/kafka_2.12-3.5.1/bin rootubuntu2203:/usr/local/kafka_2.12-3.5.1/bin# ls connect-distributed.sh kafka-delegation-tokens.sh kafka-mirror-mak…...

【自动化运维】playbook剧本

目录 一、Ansible 的脚本 playbook 剧本1.1playbooks的组成 二、剧本编写实验2.1定义、引用变量2.2使用远程主机sudo切换用户2.3whenn条件判断2.4迭代 三、Templates 模板四、Tags模板 一、Ansible 的脚本 playbook 剧本 1.1playbooks的组成 &#xff08;1&#xff09;Tasks&…...

java中双引号和单引号的区别

起因 刷题的时候&#xff0c;有判断是否相同的情况&#xff0c;然后我发现单引号和双引号在上的表现不一样&#xff0c;所以记录一下。 解释 在Java中&#xff0c;双引号&#xff08;" "&#xff09;和单引号&#xff08;’ &#xff09;在使用上有很重要的区别&a…...

jenkinsfile指定jenkins流水线的构建号

背景 升级Jenkins过程中不小心导致流水线配置文件job目录丢失, 重新配置流水线后所有流水线构建号码都从1开始构建了, 然而我们的产品关联了jenkins构建号,重新从1 构建会导致各种问题. 解决方案 在Jenkinsfile文件中指定流水线的构建号为一个不存在的数字, 这样就不会冲突了…...

微信小程序:实现提示窗确定,取消执行不同操作(消息提示确认取消)showModal

效果 代码 wx.showModal({title: 提示,content: 是否确认退出,success: function (res) {if (res.confirm) {console.log(用户点击确定)} else if (res.cancel) {console.log(用户点击取消)}}})...

深度学习论文: Q-YOLO: Efficient Inference for Real-time Object Detection及其PyTorch实现

深度学习论文: Q-YOLO: Efficient Inference for Real-time Object Detection及其PyTorch实现 Q-YOLO: Efficient Inference for Real-time Object Detection PDF: https://arxiv.org/pdf/2307.04816.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代…...

解读随机森林的决策树:揭示模型背后的奥秘

一、引言 随机森林[1]是一种强大的机器学习算法&#xff0c;在许多领域都取得了显著的成功。它由多个决策树组成&#xff0c;而决策树则是构建随机森林的基本组件之一。通过深入解析决策树&#xff0c;我们可以更好地理解随机森林模型的工作原理和内在机制。 决策树是一种树状结…...

OceanMind海睿思获评中国信通院“内审数字化产品评测”卓越级(最高级)!

2023年7月27日&#xff0c;由中国内部审计协会、中国通信标准化协会指导&#xff0c;中国信息通信研究院主办的第二届数字化审计论坛在北京成功召开。 大会聚焦内部审计数字化领域先进实践、研究成果、行业发展举措&#xff0c;重磅发布了多项内部审计数字化领域的最新研究和实…...

TPlink云路由器界面端口映射设置方法?快解析内网穿透能实现吗?

有很多网友在问&#xff1a;TPlink路由器端口映射怎么设置&#xff1f;因为不懂端口映射的原理&#xff0c;所以无从下手&#xff0c;下面小编就给大家分享TPlink云路由器界面端口映射设置方法&#xff0c;帮助大家快速入门TP路由器端口映射设置方法。 1.登录路由器管理界面&a…...

css3的filter图片滤镜使用

业务介绍 默认&#xff1a;第一个图标为选中状态&#xff0c;其他三个图标事未选中状态 样式&#xff1a;选中状态是深蓝&#xff0c;未选中状体是浅蓝 交互&#xff1a;鼠标放上去选中&#xff0c;其他未选中&#xff0c;鼠标离开时候保持当前选中状态 实现&#xff1a;目前…...

❤️创意网页:打造炫酷网页 - 旋转彩虹背景中的星星动画

✨博主&#xff1a;命运之光 &#x1f338;专栏&#xff1a;Python星辰秘典 &#x1f433;专栏&#xff1a;web开发&#xff08;简单好用又好看&#xff09; ❤️专栏&#xff1a;Java经典程序设计 ☀️博主的其他文章&#xff1a;点击进入博主的主页 前言&#xff1a;欢迎踏入…...

react常用知识点

React是一个用于构建用户界面的JavaScript库。以下是React常用的知识点&#xff1a; 组件&#xff1a;React将用户界面分解成小而独立的组件&#xff0c;每个组件都有自己的状态和属性&#xff0c;并且可以通过组合这些组件来构建复杂的用户界面。 // 函数组件示例 function We…...

iOS开发-QLPreviewController与UIDocumentInteractionController显示文档

iOS开发-QLPreviewController与UIDocumentInteractionController显示文档 在应用中,我们有时想预览文件, 可以使用QLPreviewController与UIDocumentInteractionController 一、QLPreviewController与UIDocumentInteractionController QLPreviewController是一个 UIViewContr…...

八、用 ChatGPT 帮助排查生产事故

目录 一、实验介绍 二、背景 三、故障排查概述 3.1 生产环境故障排查涉及的角色...

算法练习-回溯

今天开始新的章节&#xff0c;关于算法中回溯法的练习&#xff0c;这部分题目的难度还是比较大的&#xff0c;但是十分锻炼人的思维与思考能力。 处理这类题目首先要注意几个基本点&#xff1a; 1.关于递归出口的设置&#xff0c;这是十分关键的&#xff0c;要避免死循环的产…...

[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析

【论文解读】Search Arena&#xff1a;搜索增强LLMs的用户偏好与性能分析 论文信息 作者: Mihran Miroyan, Tsung-Han Wu, Logan King等 标题: Search Arena: Analyzing Search-Augmented LLMs 来源: arXiv preprint arXiv:2506.05334v1, 2025 一、研究背景&#xff1a;…...

YOLOv8 升级之路:主干网络嵌入 SCINet,优化黑暗环境目标检测

文章目录 引言1. 低照度图像检测的挑战1.1 低照度环境对目标检测的影响1.2 传统解决方案的局限性 2. SCINet网络原理2.1 SCINet核心思想2.2 网络架构 3. YOLOv8与SCINet的集成方案3.1 总体架构设计3.2 关键集成代码3.3 训练策略 4. 实验结果与分析4.1 实验设置4.2 性能对比4.3 …...

11 - ArcGIS For JavaScript -- 高程分析

这里写自定义目录标题 描述代码实现结果 描述 高程分析是地理信息系统(GIS)中的核心功能之一&#xff0c;主要涉及对地表高度数据(数字高程模型, DEM)的处理和分析。 ArcGIS For JavaScript4.32版本的发布&#xff0c;提供了Web端的针对高程分析的功能。 代码实现 <!doct…...

【k8s】k8s集群搭建

k8s集群搭建 一、环境准备1.1 集群类型1.2 安装方式1.3 主机规划1.4 环境配置1.4.1 说明1.4.2 初始化1.4.3 关闭防火墙和禁止防火墙开机启动1.4.4 设置主机名1.4.5 主机名解析1.4.6 时间同步1.4.7 关闭selinux1.4.8 关闭swap分区1.4.9 将桥接的IPv4流量传递到iptables的链1.4.1…...

基于Django开发的运动商城系统项目

运动商城系统项目描述 运动商城系统是一个基于现代Web技术构建的电子商务平台&#xff0c;专注于运动类商品的在线销售与管理。该系统采用前后端分离架构&#xff0c;前端使用Vue.js实现动态交互界面&#xff0c;后端基于Django框架提供RESTful API支持&#xff0c;数据库采用…...

PHP 复制商品扩展实操:轻松切换一号通、99api ,实现商品复制功能

目前已有一号通、99api复制商品扩展 复制商品扩展入口 namespace crmeb\services\copyproduct;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use think\facade\Config; use think\Container;/*** Class Product* package crmeb\services\copyp…...

Go 为何天生适合云原生?

当前我们正处在 AI 时代&#xff0c;但是在基础架构领域&#xff0c;仍然处在云原生时代。云原生仍然是当前时代的风口之一。作为一个 Go 开发者&#xff0c;职业进阶的下一站就是学习云原生技术。作为 Go 开发者学习云原生技术有得天独厚的优势&#xff0c;这是因为 Go 天生适…...

AI Infra运维实践:DeepSeek部署运维中的软硬结合

发布会资料 《AI Infra运维实践&#xff1a;DeepSeek部署运维中的软硬结合》 袋鼠云运维服务 1、行业痛点 随着数字化转型的深入&#xff0c;企业面临的运维挑战日益复杂&#xff0c;所依托的平台在长期使用的过程中积累了各式各样的问题或者难点。这些问题不仅影响效率&…...

AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合

每一次滑动手机屏幕&#xff0c;电商平台向你推荐心仪商品的背后&#xff0c;是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”&#xff0c;商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。 一、协同过滤&#xff1a;推荐系统的基石与演进 协同…...