当前位置: 首页 > news >正文

Pytorch(三)

一、经典网络架构图像分类模型

数据预处理部分:

  • 数据增强
  • 数据预处理
  • DataLoader模块直接读取batch数据

网络模块设置:

  • 加载预训练模型,torchvision中有很多经典网络架构,可以直接调用
  • 注意别人训练好的任务跟咱们的并不完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成自己的任务
  • 续联时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的

网络模型保存与测试:

  • 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
  • 读取模型进行实际测试

二、迁移学习

利用别人训练好的模型来训练自己的模型

注:两种物体尽可能相似

迁移学习网站:Start Locally | PyTorch

三、花图像分类案例

未完结

#数据读取与预处理操作
data_dir = './a/'
# 训练集
train_dir = data_dir + '/train'
#验证集
valid_ir = data_dir + '/valid'#制作数据源
data_transfroms = {'train':transforms.Compose([transforms.RandomRotation(45), #随机旋转(-45~45)transforms.CenterCrop(224), #从中心开始裁剪transforms.RandomHorizontalFlip(p = 0.5), #随机水平翻转transforms.RandomVerticalFlip(p = 0.5), #随机垂直翻转transforms.ColorJitter(brightness=0.2,contrast=0.1,saturation=0.1,hue = 0.1),transforms.RandomGrayscale(p = 0.025), #概率转换成灰度率,3通道就是R=G=Btransforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),'valid':transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),
}#batch数据制作
batch_size = 8
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir,x),data_transfroms[x]) for x in ['train','valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size = batch_size,shuffle = True) for x in ['train','valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train','valid']}
class_names = image_datasets['train'].classes#读取标签对应的实际名字
with open('cat_to_name.json','r') as f:cat_to_name = json.load(f)#加载model中提供的模型,并且直接用训练好的权重当做初始化参数
model_name = 'resnet'
#是否用人家训练好的特征来做
feature_extract = True#是否用GPU来训练
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:print('cuda is not available. Training on CPU')
else:print('cuda is available. Training on GPU')device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")def set_parameter_requires_grad(model,feature_extracting):if feature_extracting:for param in model.parameter():param.requires_grad = Falsemodel_ft = models.resnet152()

相关文章:

Pytorch(三)

一、经典网络架构图像分类模型 数据预处理部分: 数据增强数据预处理DataLoader模块直接读取batch数据 网络模块设置: 加载预训练模型,torchvision中有很多经典网络架构,可以直接调用注意别人训练好的任务跟咱们的并不完全一样,需要把最后…...

Linux——进程控制

目录 1. 进程创建 1.1 fork函数 1.2 fork系统调用内部宏观流程 1.3 fork后子进程执行位置分析 1.4 fork后共享代码分析 1.5 fork返回值 1.6 写时拷贝 1.7 fork常规用法 1.8 fork调用失败的原因 2.进程终止 2.1 进程退出场景 2.2 strerror函数—返回描述错误号的字符…...

剑指 Offer 59 - I. 滑动窗口的最大值 / LeetCode 239. 滑动窗口最大值(优先队列 / 单调队列)

题目: 链接:剑指 Offer 59 - I. 滑动窗口的最大值;LeetCode 239. 滑动窗口最大值 难度:困难 下一篇:剑指 Offer 59 - II. 队列的最大值(单调队列) 给你一个整数数组 nums,有一个大…...

【Linux后端服务器开发】IP协议

目录 一、IP协议概述 二、协议头格式 三、网段划分 四、IP地址的数量限制 五、路由 六、分片和组装 一、IP协议概述 主机:配有IP地址,但是不进行路由控制的设备 路由器:即配有IP地址,又能进行路由控制 节点:主…...

React组件进阶之children属性,props校验与默认值以及静态属性static

React组件进阶之children属性,props校验与默认值以及静态属性static 一、children属性二、props校验2.1 props说明2.2 prop-types的安装2.3 props校验规则2.4 props默认值 三、静态属性static 一、children属性 children 属性:表示该组件的子节点,只要组…...

ceph集群中RBD的性能测试、性能调优

文章目录 rados benchrbd bench-write测试工具Fio测试ceph rbd块设备的iops性能测试ceph rbd块设备的带宽测试ceph rbd块设备的延迟 性能调优 rados bench 参考:https://blog.csdn.net/Micha_Lu/article/details/126490260 rados bench为ceph自带的基准测试工具&am…...

texshop mac中文版-TeXShop for Mac(Latex编辑预览工具)

texshop for mac是一款可以在苹果电脑MAC OS平台上使用的非常不错的Mac应用软件,texshop for mac是一个非常有用的工具,广泛使用在数学,计算机科学,物理学,经济学等领域的合作,这些程序的标准tetex分布特产…...

简单认识redis高可用实现方法

文章目录 一、redis群集三种模式二、 Redis 主从复制1、简介2、作用:3、流程:4.配置主从复制 三、Redis 哨兵模式1、简介2、原理:3、作用:4、哨兵结构由两部分组成,哨兵节点和数据节点:5、故障转移机制:6、…...

搭建git服务器

1.创建linux账户,创建文件 adduser git passwd gitpsw su git pwd cd ~/ mkdir .ssh cd ~/.ssh touch authorized_keys 2.特别重要(单独起一行),给文件设权限 chmod 700 /home/git/.ssh chmod 600 /home/git/.ssh/authorized_keys 3.本地生产密钥并把…...

线程中断机制

如何中断一个线程? 首先一个线程不应该由其他线程来强制中断或者停止,而是应该由线程自己自行停止。所以我们看到线程的stop()、resume()、suspend()等方法已经被标记为过时了。 其次在java中没有办法立即停止一个线程,然而停止线程显得尤为重…...

CollectionUtils工具类的使用

来自:小小程序员。 本文仅作记录 org.apache.commons.collections包下的CollectionUtils工具类,下面说说它的用法: 一、集合判空 通过CollectionUtils工具类的isEmpty方法可以轻松判断集合是否为空,isNotEmpty方法判断集合不为…...

基于Nonconvex规划的配电网重构研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

yolo系列笔记(v4-v5)

YOLOv4 YOLOv4网络详解_哔哩哔哩_bilibili 网络结构,在Yolov3的Darknet的基础上增加了CSP结构。 CSP的优点: 加强CNN的学习能力 去除计算瓶颈。 减少显存的消耗。 结构为: 、 其实还是类似与残差网络的结构,保留下采样之前…...

小白如何高效刷题Leetcode?

文章目录 为什么会有这样的现象?研究与学习人生而有别 如何解决困境?1. 要补的:化抽象为具体,列举找规律2. 要补的:前人总结的套路3. 与人交流探讨4. 多写总结文章 总结 明明自觉学会了不少知识,可真正开始…...

使用IDEA打jar包的详细图文教程

1. 点击intellij idea左上角的“File”菜单 -> Project Structure 2. 点击"Artifacts" -> 绿色的"" -> “JAR” -> Empty 3. Name栏填入自定义的名字,Output ditectory 选择 jar 包目标目录,Available Elements 里右击…...

《MySQL 实战 45 讲》课程学习笔记(二)

日志系统:一条 SQL 更新语句是如何执行的? 与查询流程不一样的是,更新流程还涉及两个重要的日志模块:redo log(重做日志)和 binlog(归档日志)。 重要的日志模块:redo l…...

微软亚研院提出模型基础架构RetNet或将成为Transformer有力继承者

作为全新的神经网络架构,RetNet 同时实现了良好的扩展结果、并行训练、低成本部署和高效推理。这些特性将使 RetNet 有可能成为继 Transformer 之后大语言模型基础网络架构的有力继承者。实验数据也显示,在语言建模任务上: RetNet 可以达到与…...

探索单例模式:设计模式中的瑰宝

文章目录 常用的设计模式有以下几种:一.创建型模式(Creational Patterns):二.结构型模式(Structural Patterns):三.行为型模式(Behavioral Patterns):四.并发…...

Bobo String Construction 2023牛客暑期多校训练营4-A

登录—专业IT笔试面试备考平台_牛客网 题目大意&#xff1a;给出一字符串t&#xff0c;求一个长为n的字符串&#xff0c;使tst中包含且仅包含两个t 1<n<1000;测试样例组数<1000 思路&#xff1a;一开始很容易想到如果t里有1&#xff0c;s就全0&#xff0c;否则s就全…...

【React学习】React父子组件通讯

1. 父到子传值 在React框架中&#xff0c;父组件可以通过 props 将数据传递给子组件。子组件通过读取 props 来访问父组件传递过来的数据。 当父组件的 props 发生变化时&#xff0c;React 会自动重新渲染子组件以确保子组件中使用的数据保持同步。 父组件 import React, {…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...