当前位置: 首页 > news >正文

飞桨AI Studio可以玩多模态了?MiniGPT4实战演练!

MiniGPT4是基于GPT3的改进版本,它的参数量比GPT3少了一个数量级,但是在多项自然语言处理任务上的表现却不逊于GPT3。项目作者以MiniGPT4-7B作为实战演练项目。

创作者:衍哲

体验链接:
https://aistudio.baidu.com/aistudio/projectdetail/6556667

一键fork

fork该项目并运行,运行环境建议至少选择A100(40G)及以上配置

图片

安装相关模块

1import os 
2os.system("pip install --pre --upgrade paddlenlp -f https://www.paddlepaddle.org.cn/whl/paddlenlp.html") # 安装nlp分支最新包
3os.system("pip install paddlepaddle-gpu==0.0.0.post112 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html")
4os.system("pip install tqdm")
5!pip install ipywidgets

引用相关模块

 1%%capture2os.environ["CUDA_VISIBLE_DEVICES"] = "0"3os.environ["FLAGS_use_cuda_managed_memory"] = "true"4import requests5from PIL import Image6import gradio as gr7from tqdm import tqdm8import ipywidgets as widgets9from IPython.display import display
10import csv    
11from itertools import islice 
12from paddlenlp.transformers import MiniGPT4ForConditionalGeneration, MiniGPT4Processor

下载miniGPT4权重或配置文件

1!mkdir minigpt4
 1%%capture2os.system("wget -O  minigpt4/model_config.json https://bj.bcebos.com/v1/ai-studio-online/924ed883c17b4b8b88b4a1f98e24d34b3b00160ac9bd4b3ba478aff6974e0e9d?responseContentDisposition=attachment%3B%20filename%3Dmodel_config.json ")3!wget -O  ./minigpt4/model_state.pdparams    https://bj.bcebos.com/v1/ai-studio-online/18bd53eaa2854263ba31fb4d75f31a5f0d38421a6da64525bff6da230389fc36?responseContentDisposition=attachment%3B%20filename%3Dmodel_state.pdparams4!wget -O  ./minigpt4/generation_config.json  https://bj.bcebos.com/v1/ai-studio-online/f0b2129d6a934a97abcaa139ac1f28e33a6940004c7a4c859737f282640cf332?responseContentDisposition=attachment%3B%20filename%3Dgeneration_config.json5!wget -O  ./minigpt4/preprocessor_config.json https://bj.bcebos.com/v1/ai-studio-online/748c332837d34f389d762f487470b1a7221edd36ccb5484b913bd2d3855ee9f6?responseContentDisposition=attachment%3B%20filename%3Dpreprocessor_config.json6!wget -O  ./minigpt4/sentencepiece.bpe.model https://bj.bcebos.com/v1/ai-studio-online/0139a1bfcdf84058b77cea4631837340ea94f5fcc37445929a3414f05d07579b?responseContentDisposition=attachment%3B%20filename%3Dsentencepiece.bpe.model7!wget  -O  ./minigpt4/special_tokens_map.json https://bj.bcebos.com/v1/ai-studio-online/90b16a96d4f94200ab417b39dcf3bce4ddef5885625c4d0c8e70b3f659cb6993?responseContentDisposition=attachment%3B%20filename%3Dspecial_tokens_map.json8!wget -O  ./minigpt4/tokenizer.json  https://bj.bcebos.com/v1/ai-studio-online/e877a685eb86499cb87e1c4cbf85353856506d12e9a841a292e780aa4a9e188a?responseContentDisposition=attachment%3B%20filename%3Dtokenizer.json9!wget  -O  ./minigpt4/tokenizer_config.json  https://bj.bcebos.com/v1/ai-studio-online/f93064db167c4075b1f86d6878cac9303fb8df418f7a42a7900785a6e188cc44?responseContentDisposition=attachment%3B%20filename%3Dtokenizer_config.json
10--2023-07-27 10:54:29--  https://bj.bcebos.com/v1/ai-studio-online/924ed883c17b4b8b88b4a1f98e24d34b3b00160ac9bd4b3ba478aff6974e0e9d?responseContentDisposition=attachment%3B%20filename%3Dmodel_config.json
11Resolving bj.bcebos.com (bj.bcebos.com)... 182.61.200.195, 182.61.200.229, 2409:8c04:1001:1002:0:ff:b001:368a
12Connecting to bj.bcebos.com (bj.bcebos.com)|182.61.200.195|:443... connected.
13HTTP request sent, awaiting response... 200 OK
14Length: 5628 (5.5K) [application/octet-stream]
15Saving to: 'minigpt4/model_config.json'

实例化miniGPT4模型和处理器

1model_path ='./minigpt4'
2model = MiniGPT4ForConditionalGeneration.from_pretrained(model_path)
3model.eval()
4processor = MiniGPT4Processor.from_pretrained(model_path)

模型推理

输入图像url+prompt(单张图片+单轮对话)

另有本地上传图像形式,请进入项目查看

 1def predict_per_url_prompt(url=None,text=None):2    if url==None:3        url = "https://paddlenlp.bj.bcebos.com/data/images/mugs.png"4    image = Image.open(requests.get(url, stream=True).raw)5    if text== None:6        text = "describe this image"78    prompt = "Give the following image: <Img>ImageContent</Img>. You will be able to see the image once I provide it to you. Please answer my questions.###Human: <Img><ImageHere></Img> <TextHere>###Assistant:"9
10    inputs = processor([image], text, prompt)
11
12    generate_kwargs = {
13        "max_length": 300,
14        "num_beams": 1,
15        "top_p": 1.0,
16        "repetition_penalty": 1.0,
17        "length_penalty": 0,
18        "temperature": 1,
19        "decode_strategy": "greedy_search",
20        "eos_token_id": [[835], [2277, 29937]],
21    }
22    outputs = model.generate(**inputs, **generate_kwargs)
23    msg = processor.batch_decode(outputs[0])
24    return msg[0][0:-5]

将图像上传到本地后的file_path+prompt(多张图片+单轮对话)

 1def predict_dir_and_one_prompt_out_list(dir_path=None,text=None):2    import os 3    assert os.path.isdir(dir_path),print('请输入文件夹路径,而不是图像路径')4    output = []5    for per_image_name in tqdm (os.listdir(dir_path)):6        image = Image.open(os.path.join(dir_path,per_image_name))7        if text== None:8            text = "describe this image"9        else:
10            text = text
11
12        prompt = "Give the following image: <Img>ImageContent</Img>. You will be able to see the image once I provide it to you. Please answer my questions.###Human: <Img><ImageHere></Img> <TextHere>###Assistant:"
13
14        inputs = processor([image], text, prompt)
15
16        generate_kwargs = {
17            "max_length": 300,
18            "num_beams": 1,
19            "top_p": 1.0,
20            "repetition_penalty": 1.0,
21            "length_penalty": 0,
22            "temperature": 1,
23            "decode_strategy": "greedy_search",
24            "eos_token_id": [[835], [2277, 29937]],
25        }
26        outputs = model.generate(**inputs, **generate_kwargs)
27        msg = processor.batch_decode(outputs[0])
28        output.append(msg[0][0:-5])
29    return output

效果展示

输入:描述这张图片,使用中文

图片

输出:这张图片显示了一个女性角色,穿着红色和白色的服装,手持一根金色的剑。她的头发是白色的,眼睛是红色的。她站在一张草地上,手持剑的柄子。这个角色看起来像是一个英雄,她的服装和装备显示出她的力量和勇气

1predict_per_url_prompt(url='https://ai-studio-static-online.cdn.bcebos.com/d283b05404bd44b69b9be868fddb67616296858284bf4ad587e29432de66e930',text="描述这张图片,使用中文")
2'这张图片显示了一个女性角色,穿着红色和白色的服装,手持一根金色的剑。她的头发是白色的,眼睛是红色的。她站在一张草地上,手持剑的柄子。这个角色看起来像是一个英雄,她的服装和装备显示出她的力量和勇气'

更多玩法,可一键fork该项目进行模型微调。

点击下方链接即可立即体验更多大模型应用。

https://aistudio.baidu.com/aistudio/application/center

相关文章:

飞桨AI Studio可以玩多模态了?MiniGPT4实战演练!

MiniGPT4是基于GPT3的改进版本&#xff0c;它的参数量比GPT3少了一个数量级&#xff0c;但是在多项自然语言处理任务上的表现却不逊于GPT3。项目作者以MiniGPT4-7B作为实战演练项目。 创作者&#xff1a;衍哲 体验链接&#xff1a; https://aistudio.baidu.com/aistudio/proj…...

C++笔记之++i和i++是原子操作吗?

C笔记之i和i是原子操作吗&#xff1f; code review! 文章目录 C笔记之i和i是原子操作吗&#xff1f;1.i是原子操作吗&#xff1f;2.i是原子操作吗&#xff1f;3.前置递增和后置递增 1.i是原子操作吗&#xff1f; 2.i是原子操作吗&#xff1f; 3.前置递增和后置递增...

Pytest+Allure+Excel接口自动化测试框架实战

1. Allure 简介 简介 Allure 框架是一个灵活的、轻量级的、支持多语言的测试报告工具&#xff0c;它不仅以 Web 的方式展示了简介的测试结果&#xff0c;而且允许参与开发过程的每个人可以从日常执行的测试中&#xff0c;最大限度地提取有用信息。 Allure 是由 Java 语言开发…...

阿里云国际版账号注册常见问题汇总

公司现与阿里云国际站达成战略合作&#xff0c;为客户提供高品质、高性能、高可用的阿里云产品与服务&#xff0c;助力客户用云服务创造更多价值&#xff0c;达成业务转型、加速和创新&#xff0c;全面提升业务竞争力。助企业在各种业务场景中充分利用混合云基础设施进行优化。…...

Flowable基础

简介 Flowable 是 BPMN 的一个基于 java 的软件实现&#xff0c;不过 Flowable 不仅仅包括 BPMN &#xff0c;还有 DMN 决策表和 CMMN Case 管理引擎&#xff0c;并且有自己的用户管理、微服务 API 等一系列功能&#xff0c; 是一个服务平台。 官方手册&#xff1a; https://…...

力扣热门100题之合并区间【中等】

题目描述 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需恰好覆盖输入中的所有区间 。 示例 1&#xff1a; 输入&#xff1a;interv…...

机会成本:隐形的手,驱动你的选择

机会成本这个词不知道你有没有听说过。 机会成本是指在面临多方案择一决策时&#xff0c;被舍弃的选项中的最高价值者。换句话说&#xff0c;机会成本是一种失去的收益&#xff0c;不是实际支付的成本。 机会成本是经济学中一个非常重要的概念&#xff0c;它可以帮助我们更好地…...

win10日程怎么同步到安卓手机?电脑日程同步到手机方法

在如今快节奏的生活中&#xff0c;高效地管理时间变得至关重要。而对于那些经常在电脑上安排日程的人来说&#xff0c;将这些重要的事务同步到手机上成为了一个迫切的需求。因为目前国内使用win10系统电脑、安卓手机的用户较多&#xff0c;所以越来越多的职场人士想要知道&…...

7月31日每日两题

第一题:再解炸弹人 小哼最近爱上了“炸弹人”游戏。你还记得在小霸王游戏机上的炸弹人吗?用放置炸弹的方法来消灭敌人。需将画面上的敌人全部消灭后,并找到隐藏在墙里的暗门才能过关。 现在有一个特殊的关卡如下。你只有一枚炸弹,但是这枚炸弹威力超强(杀伤距离超长,可…...

首期华为云ROMA Connect《企业集成战略与华为数字化之道》高研班在东莞圆满举办

7月25日&#xff0c;首期华为云ROMA Connect《企业集成战略与华为数字化之道》高研班在东莞华为制造业数字化转型中心圆满举办。 20多家东莞精密机械、电子、环保等领域的先进企业董事长、总经理、CIO、总监等高管参加培训。 本次高研班邀请到华为数字化转型专家陈劲、马兵东…...

JS语法知识点

变量声明&#xff1a; 使用 var 关键字声明的变量具有函数作用域&#xff0c;可以在函数内部访问。使用 let 或 const 关键字声明的变量具有块级作用域&#xff0c;只在声明的块内有效。 数据类型&#xff1a; 字符串&#xff08;String&#xff09;&#xff1a;表示文本数据&a…...

【设计模式】 策略模式

策略模式&#xff08;Strategy Pattern&#xff09;是一种行为型设计模式&#xff0c;它定义了一系列算法&#xff0c;将每个算法封装起来&#xff0c;使它们可以相互替换&#xff0c;让客户端代码和算法的具体实现解耦。这样&#xff0c;客户端可以根据不同的需求选择不同的算…...

Redis优惠券秒杀超卖问题

Redis秒杀超卖问题 前言一、出现秒杀超卖的原因二、超卖解决方案使用乐观锁解决超卖问题程序中进行解决 前言 这是我认为b站上最好的redis教程&#xff0c;各方面讲解透彻&#xff0c;知识点覆盖比较全。 黑马redis视频链接&#xff1a;B站黑马redis教学视频 本文参考黑马redi…...

14个最强大的建筑设计AI工具

在整个行业中&#xff0c;建筑师在他们的创造性追求中正在拥抱一个新的合作伙伴&#xff1a;AI。 一旦受到重复和单调的困扰&#xff0c;建筑工人发现自己正处于数字革命的风口浪尖&#xff0c;其中比特和字节掌握着自动化和曾经难以想象的可能性的关键。 推荐&#xff1a;用 …...

Ueditor 百度强大富文本Springboot 项目集成使用(包含上传文件和上传图片的功能使用)简单易懂,举一反三

Ueditor 百度强大富文本Springboot 项目集成使用 首先如果大家的富文本中不考虑图片或者附件的情况下&#xff0c;只考虑纯文本且排版的情况下我们可以直接让前端的vue来继承UEditor就可以啦。但是要让前端将那几个上传图片和附件的哪些功能给阉割掉&#xff01; 然后就是说如…...

【NLP】一个使用PyTorch实现图像分类的迁移学习实例

一个使用PyTorch实现图像分类的迁移学习实例 1. 导入模块2. 加载数据3. 模型处理4. 训练及验证模型5. 微调6. 其他代码 在特征提取中&#xff0c;可以在预先训练好的网络结构后修改或添加一个简单的分类器&#xff0c;然后将源任务上预先训练好的网络作为另一个目标任务的特征提…...

【wsl-windows子系统】安装、启用、禁用以及同时支持docker-desktop和vmware方案

如果你要用docker桌面版&#xff0c;很可能会用到wsl&#xff0c;如果没配置好&#xff0c;很可能wsl镜像会占用C盘很多空间。 前提用管理员身份执行 wsl-windows子系统安装和启用 pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper…...

使用docker部署springboot微服务项目

文章目录 1. 环境准备1. 准备好所用jar包项目2.编写相应的Dockerfile文件3.构建镜像4. 运行镜像5. 测试服务是否OK6.端口说明7.进入容器内8. 操作容器的常用命令 1. 环境准备 检查docker是否已安装 [rootlocalhost /]# docker -v Docker version 1.13.1, build 7d71120/1.13.…...

uniapp兼容微信小程序和支付宝小程序遇到的坑

1、支付宝不支持v-show 改为v-if。 2、v-html App端和H5端支持 v-html &#xff0c;微信小程序会被转为 rich-text&#xff0c;其他端不支持 v-html。 解决方法&#xff1a;去插件市场找一个支持跨端的富文本组件。 3、导航栏处有背景色延伸至导航栏外 兼容微信小程序和支…...

LeetCode208.Implement-Trie-Prefix-Tree<实现 Trie (前缀树)>

题目&#xff1a; 思路&#xff1a; tire树&#xff0c;学过&#xff0c;模板题。一种数据结构与算法的结合吧。 代码是&#xff1a; //codeclass Trie { private:bool isEnd;Trie* next[26]; public:Trie() {isEnd false;memset(next, 0, sizeof(next));}void insert(strin…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...