当前位置: 首页 > news >正文

WGCNA | 值得你深入学习的生信分析方法!~(网状分析-第五步-高级可视化)

1写在前面

前面我们用WGCNA分析完成了一系列的分析,聚类分割模块。🥰

随后进一步筛选,找到与我们感兴趣的表型或者临床特征相关的模块,而且进行了模块内部分析。😘

再然后是对感兴趣模块进行功能注释,了解模块的功能及涉及的潜在机制。🥳

本期主要是介绍一些可视化的方法,大家了解一下吧。🥰

2用到的包

rm(list = ls())
library(WGCNA)
library(dplyr)

3示例数据

load("FemaleLiver-01-dataInput.RData")
load("FemaleLiver-02-networkConstruction-auto.RData")

4计算基因数与样本数

计算一下基因数和样本数吧,后面会用到。🤓

nGenes <-  ncol(datExpr)
nSamples <- nrow(datExpr)

5基因网络的可视化

5.1 计算TOM

我们再重新计算一下TOM吧, power是6,之前的教程介绍过如何计算。

dissTOM <-  1-TOMsimilarityFromExpr(datExpr, power = 6)
alt

5.2 转换一下并可视化

这里我们需要转换一下dissTOM, 可以增强对比,方便进行可视化。

plotTOM <- dissTOM^6

diag(plotTOM) <- NA

sizeGrWindow(9,9)

TOMplot(plotTOM, geneTree, moduleColors, main = "Network heatmap plot, all genes")

5.3 随机选择基因

由于数据量比较大,这里我们就随机选择300个基因来进行可视化吧。😉

nSelect <-  300

set.seed(123)
select <- sample(nGenes, size = nSelect)
selectTOM <- dissTOM[select, select]

selectTree <- hclust(as.dist(selectTOM), method = "average")
selectColors <- moduleColors[select]

5.4 可视化

来吧,展示!~😜

浅色代表low adjacency (overlap),深色代表higher adjacency (overlap)。🤨


这里需要补充一下,如果你的TOM是用blockwise计算得到的,需要对每个block都运行一遍这个code,这里不做具体介绍了,写个循环吧。😏


sizeGrWindow(9,9)
plotDiss <- selectTOM^6
diag(plotDiss) <- NA
TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot, selected genes")
alt

6网络的eigengenes可视化

6.1 计算模块的eigengenes

MEs <-  moduleEigengenes(datExpr, moduleColors)$eigengenes

6.2 合并module与traits信息

weight <-  as.data.frame(datTraits$weight_g)
names(weight) <- "weight"
MET <- orderMEs(cbind(MEs, weight))

6.3 可视化

sizeGrWindow(5,7.5)
par(cex = 0.9)
plotEigengeneNetworks(MET, "",
marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2),
cex.lab = 0.8, xLabelsAngle= 90
)
alt

7如何引用

📍
Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559


alt
最后祝大家早日不卷!~

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

📍 往期精彩

📍 🤩 WGCNA | 值得你深入学习的生信分析方法!~
📍 🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!
📍 🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?
📍 🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)
📍 🤩 scRNA-seq | 吐血整理的单细胞入门教程
📍 🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~
📍 🤩 RColorBrewer | 再多的配色也能轻松搞定!~
📍 🧐 rms | 批量完成你的线性回归
📍 🤩 CMplot | 完美复刻Nature上的曼哈顿图
📍 🤠 Network | 高颜值动态网络可视化工具
📍 🤗 boxjitter | 完美复刻Nature上的高颜值统计图
📍 🤫 linkET | 完美解决ggcor安装失败方案(附教程)
📍 ......

本文由 mdnice 多平台发布

相关文章:

WGCNA | 值得你深入学习的生信分析方法!~(网状分析-第五步-高级可视化)

1写在前面 前面我们用WGCNA分析完成了一系列的分析&#xff0c;聚类分割模块。&#x1f970; 随后进一步筛选&#xff0c;找到与我们感兴趣的表型或者临床特征相关的模块&#xff0c;而且进行了模块内部分析。&#x1f618; 再然后是对感兴趣模块进行功能注释&#xff0c;了解模…...

try catch finally执行顺序

try catch finally&#xff0c;try里有return&#xff0c;finally还执行么&#xff1f;答案&#xff1a; 执行&#xff0c;并且返回return时&#xff0c;finally的执行早于try。try-catch-finally的执行顺序无return当try中的t()没有抛出异常public static void main(String[] …...

2023年数学建模美赛D题(Prioritizing the UN Sustainability Goals)分析与编程

2023年数学建模美赛D题分析建模与编程 重要说明&#xff1a; 本文介绍2023年美赛题目&#xff0c;并进行简单分析&#xff1b;本文首先对 D题进行深入分析&#xff0c;其它题目分析详见专题讨论&#xff1b;本文及专题分析将在 2月17日每3小时更新一次&#xff0c;完全免费&am…...

35岁测试工程师被辞退,给你们一个忠告

一&#xff1a;前言&#xff1a;人生的十字路口静坐反思 入软件测试这一行至今已经10年多&#xff0c;承蒙领导们的照顾与重用&#xff0c;同事的支持与信任&#xff0c;我的职业发展算是相对较好&#xff0c;从入行到各类测试技术岗位&#xff0c;再到测试总监&#xff0c;再转…...

华为OD机试题 - 租车骑绿岛(JavaScript)

最近更新的博客 2023新华为OD机试题 - 斗地主(JavaScript)2023新华为OD机试题 - 箱子之形摆放(JavaScript)2023新华为OD机试题 - 考古学家(JavaScript)2023新华为OD机试题 - 相同数字的积木游戏 1(JavaScript)2023新华为OD机试题 - 最多等和不相交连续子序列(JavaScri…...

Linux下Python脚本的编写解析fio(minimal格式)(三)

在服务器测试(storage)过程中&#xff0c;会看到很多人写跑fio的脚本用minimal格式来解析&#xff0c;因为这种格式返回的结果对与脚本(shell,python)解析log非常方便.下面介绍一下这种方式下,用Python来解析log 1 一般客户会要求结果中出现一下参数的值&#xff1a; bandwidth…...

【实战场景二】如何设计一个分布式锁?

如何优雅的设计一个分布式锁&#xff1f;如何设计一个分布式锁&#xff1f;1、什么是分布式锁2、那么分布式锁&#xff0c;具备什么条件呢&#xff1f;3、设计分布式锁有哪些方式&#xff1f;3.1 利用redis实现分布式锁原理3.2 基于数据库做分布式锁3.3 基于zookeeper实现分布式…...

Java中ThreadLocal类详解

ThreadLocal从名字上我们看出&#xff0c;它叫做本地线程变量&#xff0c;每个线程都有各自的的变量&#xff0c;而不再是我们之前的两个线程共用同一个变量&#xff1b;以这个类创建的变量&#xff0c;在多个线程都用到这个变量时&#xff0c;可以为每一个线程创建一个变量副本…...

从一致性角度考虑推荐冷启动长尾推荐问题(一)

前言&#xff1a;目前中长尾推荐的方法有很多&#xff0c;主流的方法有几类比如:1)在没有项目ID嵌入的情况下提高推荐模型的鲁棒性&#xff0c;2)利用有限的交互数据提高学习效率&#xff0c;如使用元学习方法;3)利用物品侧面信息&#xff0c;便于物品ID嵌入的初始化&#xff0…...

电脑(Windows)常用快捷键

简述&#xff1a;实用的键盘快捷键是一个程序员的必备技能&#xff0c;下面给大家整理了一下常用的键盘快捷键&#xff1b; ⭐CtrlP 打开“打印机”对话框&#xff1b; ⭐CtrlW 关闭当前网页&#xff1b; ⭐CtrlF 查找&#xff08;网页内查找&#xff09;&#xff1b; ⭐…...

Java类加载器

1 类加载器 1.1 类加载 当程序要使用某个类时&#xff0c;如果该类还未被加载到内存中&#xff0c;则系统会通过类的加载&#xff0c;类的连接,类的初始化这三个步骤来对类进行初始化。如果不出现意外情况&#xff0c;JVM将会连续完成这三个步骤,所以有时也把这三个步骤统称为…...

信号完整性设计规则之单根信号失真最小化

本文内容从《信号完整性与电源完整性分析》整理而来&#xff0c;加入了自己的理解&#xff0c;如有错误&#xff0c;欢迎批评指正。 1. 通常采用所能容许的最长上升边。 上升边越短&#xff0c;带宽越大&#xff0c;信号完整性问题越严重。 2. 使用可控阻抗走线。 可控阻抗…...

Python3 数据结构

列表 Python中列表是可变的&#xff0c;这是它区别于字符串和元组的最重要的特点&#xff0c;一句话概括即&#xff1a;列表可以修改&#xff0c;而字符串和元组不能。 以下是 Python 中列表的方法&#xff1a; 方法 描述 list.append(x) 把一个元素添加到列表的结尾&#xf…...

Compose-Navigation带参传递

带参传递 目前 compose 还不支持传入对象作为参数&#xff01; 简单双参数 根目录下新建文件夹 entity&#xff0c;新建单例类 ContentType 作为数据类存储位置 新增数据类 DemoContent&#xff0c;这表示我们需要传入的两个参数&#xff0c;后面带问号判空 object ContentT…...

【函数栈帧的创建和销毁】 -- 神仙级别底层原理,你学会了吗?

文章目录1.函数的调用方式 2.函数在栈区上的动作 1.函数的调用方式 相信你对调用函数一点都不陌生&#xff0c;但是在调用函数的过程中&#xff0c;却存在着很多你无法见到的东西&#xff0c;这是底层信息&#xff0c;想要理解透彻&#xff0c;就得深入底层去观察。 本文以…...

Promise的使用及原理

此文章主要讲解核心思想和基本用法&#xff0c;想要了解更多细节全面的使用方式&#xff0c;请阅读官方API 这篇文章假定你具备最基本的异步编程知识&#xff0c;例如知道什么是回调&#xff0c;知道什么是链式调用&#xff0c;同时具备最基本的单词量&#xff0c;例如page、us…...

怎么拥有一个帅气的 CMD 命令窗口 ❓ - Windows

自从拥有这样一个炫酷的命令窗口&#xff0c;我都舍不得关掉它了 关于我为什么我要闲的去 “打扮” 一个命令窗口&#xff0c;这要从星期五下午的一场 摸鱼 &#x1f420; 开始&#xff0c;当时我要创建一个 vue ts vite 的项目练练手&#xff0c;为新项目开始做准备&#x…...

时隔多年再学习Vuex,什么?原来如此简单!

时隔多年再学习Vuex&#xff0c;什么&#xff1f;原来如此简单! start 写 Vue 写了好多年了&#xff0c;少不了和 Vuex 打交道。虽然使用它的次数非常频繁&#xff0c;但是潜意识里总觉得这东西很难&#xff0c;导致遇到与之相关的问题就容易慌张。时至今日&#xff0c;升级版…...

Linux笔记_gcc

Linux_gcc程序的翻译链接库make与makefile关于gcc的一些笔记。 程序的翻译 gcc/g是一个编译器。 预处理&#xff1a;头文件展开、条件编译、宏替换、去注释 编译&#xff1a;C语言汇编语言 汇编&#xff1a;汇编->可重定位目标二进制文件&#xff0c;不可以被执行&#xff0…...

2023美赛MCM A题 详细思路

2023美赛(MCM/ICM)如期开赛&#xff0c;为了尽早的帮大家确定选题。这里我们加急为大家编辑出A赛题详细思路&#xff0c;方便大家快速对A题目的难度有个大致的了解。同时&#xff0c;我们也给出了A题目简要的解题思路&#xff0c;以及该问题在实际解决中可能会遇到的难点。A题的…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...