当前位置: 首页 > news >正文

【决策树-鸢尾花分类】

决策树算法简介

决策树是一种基于树状结构的分类与回归算法。它通过对数据集进行递归分割,将样本划分为多个类别或者回归值。决策树算法的核心思想是通过构建树来对数据进行划分,从而实现对未知样本的预测。

决策树的构建过程

决策树的构建过程包括以下步骤:

  1. 选择特征:从数据集中选择一个最优特征,使得根据该特征的取值能够将数据划分为最具有区分性的子集。

  2. 划分数据集:根据选定的特征将数据集分割成不同的子集,每个子集对应树中的一个分支。

  3. 递归构建:对每个子集递归地应用上述步骤,直到满足终止条件,如子集中的样本属于同一类别或达到预定深度。

  4. 决策节点:将特征选择和数据集划分过程映射到决策树中的节点。

  5. 叶节点:表示分类结果的节点,叶节点对应于某个类别或者回归值。

决策树的优点

决策树算法具有以下优点:

  1. 易于理解和解释:决策树的构建过程可以直观地表示,易于理解和解释,适用于数据探索和推断分析。

  2. 处理多类型数据:决策树可以处理离散型和连续型特征,适用于多类型数据。

  3. 能处理缺失值:在构建决策树时,可以处理含有缺失值的数据。

  4. 高效处理大数据:决策树算法的时间复杂度较低,对于大规模数据集也能得到较高的效率。

决策树的缺点

决策树算法也有一些缺点:

  1. 容易过拟合:决策树容易生成复杂的模型,导致过拟合问题,需要进行剪枝等处理。

  2. 不稳定性:数据的细微变化可能导致生成不同的决策树,算法不稳定。

决策树的应用场景

决策树算法在许多领域都有广泛的应用,包括但不限于:

  1. 分类问题:决策树用于解决分类问题,如垃圾邮件识别、疾病诊断等。

  2. 回归问题:对于回归问题,决策树可以预测连续性输出,如房价预测、销售量预测等。

  3. 特征选择:决策树可用于选择重要特征,帮助简化模型。

示例代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score# 加载数据集
data = load_iris()
X, y = data.data, data.target# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y)# 创建决策树分类器
clf = DecisionTreeClassifier()# 训练模型
clf.fit(X_train, y_train)# 预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)# 直接对比预测值和真实值
print(y_pred == y_test)# 可视化决策树
from sklearn.tree import export_graphviz
import graphvizdot_data = export_graphviz(clf, out_file=None,feature_names=data.feature_names,class_names=data.target_names,filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("iris")
graph.view()# 可视化混淆矩阵
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)# 可视化混淆矩阵
sns.heatmap(cm, annot=True)
plt.show()# 可视化分类报告
from sklearn.metrics import classification_report# 计算分类报告
report = classification_report(y_test, y_pred)# 打印分类报告
print(report)# 可视化特征重要性
import matplotlib.pyplot as plt
import numpy as np# 获取特征重要性
importances = clf.feature_importances_# 获取特征名称
feature_names = data.feature_names# 将特征重要性标准化
importances = importances / np.max(importances)# 将特征名称和特征重要性组合在一起
feature_names = np.array(feature_names)
feature_importances = np.array(importances)
feature_names_importances = np.vstack((feature_names, feature_importances))# 将特征重要性排序
feature_names_importances = feature_names_importances[:, feature_names_importances[1, :].argsort()[::-1]]# 绘制条形图
plt.bar(feature_names_importances[0, :], feature_names_importances[1, :].astype(float))
plt.show()



总结

决策树算法是一种强大且灵活的机器学习算法,适用于分类和回归任务。它具有易于理解、处理多类型数据以及高效处理大数据等优点。然而,需要注意过拟合和不稳定性等缺点。

相关文章:

【决策树-鸢尾花分类】

决策树算法简介 决策树是一种基于树状结构的分类与回归算法。它通过对数据集进行递归分割,将样本划分为多个类别或者回归值。决策树算法的核心思想是通过构建树来对数据进行划分,从而实现对未知样本的预测。 决策树的构建过程 决策树的构建过程包括以…...

类与对象(中--构造函数)

类与对象(中--构造函数) 1、构造函数的特性2、默认构造函数3、编译器自动生成的默认构造函数(无参的)(当我们不写构造函数时)3.1 编译器自动生成的默认构造函数只对 自定义类型的成员变量 起作用&#xff0…...

Makefile学习1

文章目录 Makefile学习1Makefile简介Makefile重要性Makefile内容1) 显式规则2) 隐晦规则3) 变量的定义4) 文件指示5) 注释 Makefile规则规则默认目标多目标多规则目标伪目标 Makefile目标依赖头文件依赖自动生成头文件依赖关系 Makefile命令Makefile变量变量定义和使用赋值立即…...

城市内涝监测预警系统,科学“智治”应对灾害

近日,台风“杜苏芮”以摧枯拉朽之势给我国东南沿海地区带来狂风骤雨,福建的三个国家气象观测站日降水量突破历史极值。之后,“杜苏芮”一路北上。中央气象台预报称,7月29日至8月1日,北京、天津、河北、山东西部、河南北…...

切片[::-1]解析列表list表示的“非负整数加1”

列表数位表示非负整数,熟练操作“满十进位”。 (本笔记适合熟练操作Python列表list的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅仅…...

Mac下certificate verify failed: unable to get local issuer certificate

出现这个问题,可以安装证书 在finder中查找 Install Certificates.command找到后双击,或者使用其他终端打开 安装完即可...

Django项目启动错误

uwsgi项目启动错误信息如下Did you install mysqlclient?Command pkg-config --exists mysqlclient returned non-zero exit status 1Command pkg-config --exists mariadb returned non-zero exit status 1.Traceback (most recent call last):File "/home/dream21th/co…...

Vue2 第十二节 Vue组件化编程 (二)

1. VueComponent 2. 单文件组件 一. VueComponent 组件本质上是一个名为VueComponent的构造函数&#xff0c;不是程序员定义的&#xff0c;是Vue.extend生成的只需要写<school/>或者<school><school/>&#xff0c;Vue解析时&#xff0c;会帮我们创建schoo…...

pycharm 远程连接服务器并且debug, 支持torch.distributed.launch debug

未经允许&#xff0c;本文不得转载&#xff0c;vx&#xff1a;837007389 文章目录 step1&#xff1a;下载专业版本的pycharmstep2 配置自动同步文件夹&#xff0c;即远程的工程文件和本地同步2.1 Tools -> Deployment -> configuration2.2 设置同步文件夹2.3 同步服务器…...

SAP ABAP 基础语法超详细

1&#xff0e;表声明 Tables: 表名[,表名]. 声明多个表时可用逗号分隔当你声明了一个数据表的同时&#xff0c;系统也同时自动生成了一个和数据表同名的结构&#xff0c;结构的变量集等于数据表里面的字段。 2&#xff0e;定义变量 Data: v1[(l)] [type t] [decimals d] [v…...

html学习3(表格table、列表list)

1、html表格由<table>标签来定义。 <thead>用来定义表格的标题部分&#xff0c;其内部用 <th > 元素定义列的标题&#xff0c;可以使其在表格中以粗体显示&#xff0c;与普通单元格区分开来。<tbody>用来定义表格的主体部分&#xff0c;其内部用<t…...

【SpringBoot】85、SpringBoot中Boolean类型数据转0/1返回序列化配置

在 SpringBoot 中,前端传参数 0,1,后端可自动解析为 boolean 类型,但后端返回前端 boolean 类型时,却无法自动转换为 0,1,所以我们需要自定义序列化配置,将 boolean 类型转化为 0,1 1、类型对应 boolean 类型有false,true对应的 int 类型0,12、序列化配置 import com.f…...

hbase优化:客户端、服务端、hdfs

hbase优化 一.读优化 1.客户端&#xff1a; scan。cache 设置是否合理&#xff1a;大scan场景下将scan缓存从100增大到500或者1000&#xff0c;用以减少RPC次数使用批量get进行读取请求离线批量读取请求设置禁用缓存&#xff0c;scan.setBlockCache(false)以指定列族或者列进行…...

docker安装memcached

查找容器是否有该镜像存在 docker search memcached拉取镜像 docker pull memcached创建容器 docker create --name memcache1 memcached或者映射一下端口 docker create -p 11211:11211 --name memcache1 memcached启动 docker start memcache1指定容器的 IP docker net…...

Redis 客户端有哪些?

文章目录 JedisLettuceRedisson最佳实践 - 到底用哪个&#xff1f; Redis 最常见的 Java 客户端有两个&#xff0c;Jedis 和 Lettuce&#xff0c;高级客户端有 Redisson&#xff0c;见下图&#xff08;图源 Clients | Redis&#xff09; Jedis Github地址&#xff1a;redis/j…...

smbms 超市订单管理系统设计与实现计划表

smbms 超市订单管理系统 项目描述 smbms-JDBC&#xff1a;不使用 SSM 框架进行开发bookStore&#xff1a;学完ssm框架后的整合项目smbms-SSM&#xff1a;使用 SSM 框架开发 项目记录 smbms-JDBC 2023-10-28&#xff1a;第一天&#xff0c;搭建环境&#xff0c;写好基本的工…...

如何解决制造业数字化改造的障碍?

制造业的数字化转型可能是一个复杂且具有挑战性的过程&#xff0c;但解决以下障碍有助于为成功实施铺平道路&#xff1a; 抵制变革&#xff1a;数字化转型中最常见的挑战之一是员工的抵制&#xff0c;尤其是那些习惯传统方法的员工。为了克服这一问题&#xff0c;组织需要培养一…...

代码随想录算法训练营day49

文章目录 Day49买卖股票的最佳时机题目思路代码贪心算法动态规划法(推荐) 买卖股票的最佳时机II题目思路代码 Day49 买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣&#xff08;LeetCode&#xff09; 题目 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i]…...

云计算与大数据——部署Kubernetes集群+完成nginx部署(超级详细!)

云计算与大数据——部署Kubernetes集群完成nginx部署(超级详细&#xff01;) 部署 Kubernetes 集群的基本思路如下&#xff1a; 准备环境&#xff1a; 选择适合的操作系统&#xff1a;根据需求选择适合的 Linux 发行版作为操作系统&#xff0c;并确保在所有节点上进行相同的选…...

Maven 打包项目后,接口识别中文乱码

背景 项目在Idea里面运行&#xff0c;调用接口发送中文消息正常&#xff0c;用Maven打包项目后&#xff0c;运行jar包&#xff0c;调用接口发送中文出现乱码。 解决方法 1.Idea编译配置 2.如果更改了上述配置之后还是没有效果&#xff0c;则在运行jar包的前面加上 -Dfile.en…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析

1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器&#xff08;TI&#xff09;推出的一款 汽车级同步降压转换器&#xff08;DC-DC开关稳压器&#xff09;&#xff0c;属于高性能电源管理芯片。核心特性包括&#xff1a; 输入电压范围&#xff1a;2.95V–6V&#xff0c;输…...