【决策树-鸢尾花分类】
决策树算法简介
决策树是一种基于树状结构的分类与回归算法。它通过对数据集进行递归分割,将样本划分为多个类别或者回归值。决策树算法的核心思想是通过构建树来对数据进行划分,从而实现对未知样本的预测。
决策树的构建过程
决策树的构建过程包括以下步骤:
-
选择特征:从数据集中选择一个最优特征,使得根据该特征的取值能够将数据划分为最具有区分性的子集。
-
划分数据集:根据选定的特征将数据集分割成不同的子集,每个子集对应树中的一个分支。
-
递归构建:对每个子集递归地应用上述步骤,直到满足终止条件,如子集中的样本属于同一类别或达到预定深度。
-
决策节点:将特征选择和数据集划分过程映射到决策树中的节点。
-
叶节点:表示分类结果的节点,叶节点对应于某个类别或者回归值。
决策树的优点
决策树算法具有以下优点:
-
易于理解和解释:决策树的构建过程可以直观地表示,易于理解和解释,适用于数据探索和推断分析。
-
处理多类型数据:决策树可以处理离散型和连续型特征,适用于多类型数据。
-
能处理缺失值:在构建决策树时,可以处理含有缺失值的数据。
-
高效处理大数据:决策树算法的时间复杂度较低,对于大规模数据集也能得到较高的效率。
决策树的缺点
决策树算法也有一些缺点:
-
容易过拟合:决策树容易生成复杂的模型,导致过拟合问题,需要进行剪枝等处理。
-
不稳定性:数据的细微变化可能导致生成不同的决策树,算法不稳定。
决策树的应用场景
决策树算法在许多领域都有广泛的应用,包括但不限于:
-
分类问题:决策树用于解决分类问题,如垃圾邮件识别、疾病诊断等。
-
回归问题:对于回归问题,决策树可以预测连续性输出,如房价预测、销售量预测等。
-
特征选择:决策树可用于选择重要特征,帮助简化模型。
示例代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score# 加载数据集
data = load_iris()
X, y = data.data, data.target# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y)# 创建决策树分类器
clf = DecisionTreeClassifier()# 训练模型
clf.fit(X_train, y_train)# 预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)# 直接对比预测值和真实值
print(y_pred == y_test)# 可视化决策树
from sklearn.tree import export_graphviz
import graphvizdot_data = export_graphviz(clf, out_file=None,feature_names=data.feature_names,class_names=data.target_names,filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("iris")
graph.view()# 可视化混淆矩阵
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)# 可视化混淆矩阵
sns.heatmap(cm, annot=True)
plt.show()# 可视化分类报告
from sklearn.metrics import classification_report# 计算分类报告
report = classification_report(y_test, y_pred)# 打印分类报告
print(report)# 可视化特征重要性
import matplotlib.pyplot as plt
import numpy as np# 获取特征重要性
importances = clf.feature_importances_# 获取特征名称
feature_names = data.feature_names# 将特征重要性标准化
importances = importances / np.max(importances)# 将特征名称和特征重要性组合在一起
feature_names = np.array(feature_names)
feature_importances = np.array(importances)
feature_names_importances = np.vstack((feature_names, feature_importances))# 将特征重要性排序
feature_names_importances = feature_names_importances[:, feature_names_importances[1, :].argsort()[::-1]]# 绘制条形图
plt.bar(feature_names_importances[0, :], feature_names_importances[1, :].astype(float))
plt.show()



总结
决策树算法是一种强大且灵活的机器学习算法,适用于分类和回归任务。它具有易于理解、处理多类型数据以及高效处理大数据等优点。然而,需要注意过拟合和不稳定性等缺点。
相关文章:
【决策树-鸢尾花分类】
决策树算法简介 决策树是一种基于树状结构的分类与回归算法。它通过对数据集进行递归分割,将样本划分为多个类别或者回归值。决策树算法的核心思想是通过构建树来对数据进行划分,从而实现对未知样本的预测。 决策树的构建过程 决策树的构建过程包括以…...
类与对象(中--构造函数)
类与对象(中--构造函数) 1、构造函数的特性2、默认构造函数3、编译器自动生成的默认构造函数(无参的)(当我们不写构造函数时)3.1 编译器自动生成的默认构造函数只对 自定义类型的成员变量 起作用࿰…...
Makefile学习1
文章目录 Makefile学习1Makefile简介Makefile重要性Makefile内容1) 显式规则2) 隐晦规则3) 变量的定义4) 文件指示5) 注释 Makefile规则规则默认目标多目标多规则目标伪目标 Makefile目标依赖头文件依赖自动生成头文件依赖关系 Makefile命令Makefile变量变量定义和使用赋值立即…...
城市内涝监测预警系统,科学“智治”应对灾害
近日,台风“杜苏芮”以摧枯拉朽之势给我国东南沿海地区带来狂风骤雨,福建的三个国家气象观测站日降水量突破历史极值。之后,“杜苏芮”一路北上。中央气象台预报称,7月29日至8月1日,北京、天津、河北、山东西部、河南北…...
切片[::-1]解析列表list表示的“非负整数加1”
列表数位表示非负整数,熟练操作“满十进位”。 (本笔记适合熟练操作Python列表list的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅仅…...
Mac下certificate verify failed: unable to get local issuer certificate
出现这个问题,可以安装证书 在finder中查找 Install Certificates.command找到后双击,或者使用其他终端打开 安装完即可...
Django项目启动错误
uwsgi项目启动错误信息如下Did you install mysqlclient?Command pkg-config --exists mysqlclient returned non-zero exit status 1Command pkg-config --exists mariadb returned non-zero exit status 1.Traceback (most recent call last):File "/home/dream21th/co…...
Vue2 第十二节 Vue组件化编程 (二)
1. VueComponent 2. 单文件组件 一. VueComponent 组件本质上是一个名为VueComponent的构造函数,不是程序员定义的,是Vue.extend生成的只需要写<school/>或者<school><school/>,Vue解析时,会帮我们创建schoo…...
pycharm 远程连接服务器并且debug, 支持torch.distributed.launch debug
未经允许,本文不得转载,vx:837007389 文章目录 step1:下载专业版本的pycharmstep2 配置自动同步文件夹,即远程的工程文件和本地同步2.1 Tools -> Deployment -> configuration2.2 设置同步文件夹2.3 同步服务器…...
SAP ABAP 基础语法超详细
1.表声明 Tables: 表名[,表名]. 声明多个表时可用逗号分隔当你声明了一个数据表的同时,系统也同时自动生成了一个和数据表同名的结构,结构的变量集等于数据表里面的字段。 2.定义变量 Data: v1[(l)] [type t] [decimals d] [v…...
html学习3(表格table、列表list)
1、html表格由<table>标签来定义。 <thead>用来定义表格的标题部分,其内部用 <th > 元素定义列的标题,可以使其在表格中以粗体显示,与普通单元格区分开来。<tbody>用来定义表格的主体部分,其内部用<t…...
【SpringBoot】85、SpringBoot中Boolean类型数据转0/1返回序列化配置
在 SpringBoot 中,前端传参数 0,1,后端可自动解析为 boolean 类型,但后端返回前端 boolean 类型时,却无法自动转换为 0,1,所以我们需要自定义序列化配置,将 boolean 类型转化为 0,1 1、类型对应 boolean 类型有false,true对应的 int 类型0,12、序列化配置 import com.f…...
hbase优化:客户端、服务端、hdfs
hbase优化 一.读优化 1.客户端: scan。cache 设置是否合理:大scan场景下将scan缓存从100增大到500或者1000,用以减少RPC次数使用批量get进行读取请求离线批量读取请求设置禁用缓存,scan.setBlockCache(false)以指定列族或者列进行…...
docker安装memcached
查找容器是否有该镜像存在 docker search memcached拉取镜像 docker pull memcached创建容器 docker create --name memcache1 memcached或者映射一下端口 docker create -p 11211:11211 --name memcache1 memcached启动 docker start memcache1指定容器的 IP docker net…...
Redis 客户端有哪些?
文章目录 JedisLettuceRedisson最佳实践 - 到底用哪个? Redis 最常见的 Java 客户端有两个,Jedis 和 Lettuce,高级客户端有 Redisson,见下图(图源 Clients | Redis) Jedis Github地址:redis/j…...
smbms 超市订单管理系统设计与实现计划表
smbms 超市订单管理系统 项目描述 smbms-JDBC:不使用 SSM 框架进行开发bookStore:学完ssm框架后的整合项目smbms-SSM:使用 SSM 框架开发 项目记录 smbms-JDBC 2023-10-28:第一天,搭建环境,写好基本的工…...
如何解决制造业数字化改造的障碍?
制造业的数字化转型可能是一个复杂且具有挑战性的过程,但解决以下障碍有助于为成功实施铺平道路: 抵制变革:数字化转型中最常见的挑战之一是员工的抵制,尤其是那些习惯传统方法的员工。为了克服这一问题,组织需要培养一…...
代码随想录算法训练营day49
文章目录 Day49买卖股票的最佳时机题目思路代码贪心算法动态规划法(推荐) 买卖股票的最佳时机II题目思路代码 Day49 买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣(LeetCode) 题目 给定一个数组 prices ,它的第 i 个元素 prices[i]…...
云计算与大数据——部署Kubernetes集群+完成nginx部署(超级详细!)
云计算与大数据——部署Kubernetes集群完成nginx部署(超级详细!) 部署 Kubernetes 集群的基本思路如下: 准备环境: 选择适合的操作系统:根据需求选择适合的 Linux 发行版作为操作系统,并确保在所有节点上进行相同的选…...
Maven 打包项目后,接口识别中文乱码
背景 项目在Idea里面运行,调用接口发送中文消息正常,用Maven打包项目后,运行jar包,调用接口发送中文出现乱码。 解决方法 1.Idea编译配置 2.如果更改了上述配置之后还是没有效果,则在运行jar包的前面加上 -Dfile.en…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
