YOLOv5:GitHub两万八Star项目
来源:投稿 作者:王同学
编辑:学姐
Yolov5详解
官方源码仓库:https://github.com/ultralytics/yolov5
相关论文:未发表(改进点都被你们抢先发了)
0 前言
截止到2022年7月,Yolov5项目已经在Github上获得了28000+个star,工业应用也十分广泛,基于Yolov5改进的相关交叉学科论文也不计其数,所以了解Yolov5对找工作还是发论文都是十分有帮助的。
Yolov5目前已经迭代到了6.1版本,所以本篇文章主要针对6.1版本进行详解
Yolov5提供了10个不同版本的模型,他们除网络的深度和宽度外并无太大差别
1 网络结构
Yolov5主要由以下几部分组成:
- 输入端: Mosaic数据增强、自适应锚框计算
- Backbone: New CSP-Darknet53
- Neck: SPPF, FPN+PAN
- Head: YOLOv3 Head
- 训练策略:CIoU loss
2 输入端
2.1 Mosaic数据增强
在 YOLOv5 中除了使用最基本的数据增强方法外,还使用了 Mosaic 数据增强方法,其主要思想就是将1- 4 张图片进行随机裁剪、缩放后,再随机排列拼接形成一张图片,实现丰富数据集的同时,增加了小样本目标,提升网络的训练速度。在进行归一化操作时会一次性计算 4 张图片的数据,因此模型对内存的需求降低。
2.2自适应锚框计算
Yolov5每次训练时会自适应的计算不同训练集中的最佳锚框值,从而帮助网络更快的收敛。
3 Backbone
Yolov5在Backbone和Neck中用了两种不同的CSP结构,具体可参考下图-Yolov5网络结构图
4 Neck
和「Yolov4中一样,都采用FPN+PAN」的结构;即除了上采样外,又增加了一部分下采样模块,通过这种方式可以融合更加丰富的特征
5 Head
在检测头方面依然采用Yolov3的检测头,并没有特别的改进
6 主要训练策略
- CIoU loss:在DIoU的基础上增加了检测框尺度的loss,增加了长和宽的loss,这样预测框就会更加的符合真实框
- Multi-scale training(0.5~1.5x):多尺度训练。
- Warmup and Cosine LR scheduler:训练前先进行Warmup热身,然后在采用Cosine学习率下降策略。
- Mixed precision:混合精度训练,能够减少显存的占用并且加快训练速度。
7 损失计算
YOLOv5的损失主要由三个部分组成:
- Classes loss,分类损失,采用的是BCE loss,注意只计算正样本的分类损失。
- Objectness loss,obj损失,采用的依然是BCE loss,注意这里的obj指的是网络预测的目标边界框与GT Box的CIoU。这里计算的是所有样本的obj损失。
- Location loss,定位损失,采用的是CIoU loss,注意只计算正样本的定位损失。
在源码中,针对预测小目标的预测特征层(P3)采用的权重是4.0,针对预测中等目标的预测特征层(P4)采用的权重是1.0,针对预测大目标的预测特征层(P5)采用的权重是0.4,作者说这是针对COCO数据集设置的超参数。
最后附上一张Yolov5的性能图,和实际检测效果图(yolov5s);
YOLO论文+代码数据🚀🚀🚀
关注下方《学姐带你玩AI》
回复“YOLO”免费领取
码字不易,欢迎大家点赞评论收藏!
相关文章:

YOLOv5:GitHub两万八Star项目
来源:投稿 作者:王同学 编辑:学姐 Yolov5详解 官方源码仓库:https://github.com/ultralytics/yolov5 相关论文:未发表(改进点都被你们抢先发了) 0 前言 截止到2022年7月,Yolov5项…...

袋鼠云产品功能更新报告04期丨2023年首次,产品升级“狂飙”
新的一年我们加紧了更新迭代的速度,增加了数据湖平台EasyLake和大数据基础平台EasyMR,超40项功能升级优化。我们将继续保持产品升级节奏,满足不同行业用户的更多需求,为用户带来极致的产品使用体验。 以下为袋鼠云产品功能更新报…...

如何在Power Virtual Agents中使用Power Automate
今天我们来介绍一下如何在Power Virtual Agents中使用PowerAutomate。我们以通过在PVA聊天机器人的对话框中输入“发布通知”后会把预设好的通知信息自动发布到Teams中的某个团队中为例。首先进入PVA聊天机器人编辑界面后选择“主题”-“新建主题”。 在“新建主题”中添加“触…...

BXC6332A第二代智能头盔方案助力电动车市场,为安全保驾护航
随着2020年6月1日起,公安部交管局在全国开展“一盔一带”安全守护行动,摩托车、电动车驾驶人乘车人按照规定正确使用头盔,是保障司乘安全的一道重要屏障,据统计,摩托车、电动自行车驾乘人员死亡事故中约80%为颅脑损伤致…...

浮点数值计算精度丢失问题剖析及解决方法
文章目录1、原因分析2、解决方法2.1、Java中使用 BigDecimal 类2.2、JavaScript 中解决计算精度丢失的问题3、使用建议1、原因分析 首先我们来看个反直觉的浮点数值计算 System.out.println(0.3*3);有的同学可能要问为啥不是0.9? 首先要知道为什么会产生这个问题…...

字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
朴素的字符串匹配算法又称为暴力匹配算法(Brute Force Algorithm),最为简单的字符串匹配算法。算法简介朴素的字符串匹配算法又称为暴力匹配算法(Brute Force Algorithm),它的主要特点是:没有预…...

CVE-2021-42278 CVE-2021-42287域内提权漏洞
漏洞介绍2021 年 11 月 9 日,国外研究员在推特上发布了AD相关的 CVE,CVE-2021-42278 & CVE-2021-42287 ,两个漏洞组合可导致域内普通用户权限提升至域管权限。CVE-2021-42278:是一个安全绕过漏洞,允许通过修改机器…...

关于IcmpSendEcho2的使用和回调问题
由于我的需求是短时间内ping多台机子,所以需要异步执行,微软提供的例子是同步方式的,根据微软官方提供的icmpSendEcho2 函数的信息 ,我需要定义一个空的宏PIO_APC_ROUTINE_DEFINED ,定义完之后,编译又出现…...
XQuery 术语
在 XQuery 中,有七种节点:元素、属性、文本、命名空间、处理指令、注释、以及文档节点(或称为根节点)。 XQuery 术语 节点 在 XQuery 中,有七种节点:元素、属性、文本、命名空间、处理指令、注释、以及文…...

会议论文分享-Security22-状态感知符号执行
Ferry: State-Aware Symbolic Execution for Exploring State-Dependent Program Paths1.引言2.问题陈述与分析2.1.实现状态感知符号执行的挑战2.2.真实程序的特征2.3.Ferry的模型2.3.1.程序状态的定义2.3.2.状态描述变量的特征3.Design3.1.Overview of Ferry3.2.状态描述变量识…...

吴恩达深度学习笔记(八)——卷积神经网络(上)
一、卷积相关 用一个ff的过滤器卷积一个nn的图像,假如padding为p,步幅为s,输出大小则为: [n2p−fs1][n2p−fs1][\frac{n2p-f}{s}1][\frac{n2p-f}{s}1][sn2p−f1][sn2p−f1] []表示向下取整(floor) 大部分深度学习…...

14 基数排序(桶排序)
文章目录1 基数排序基本思想2 基数排序的代码实现2.1 java2.2 scala3 基数排序总结1 基数排序基本思想 1) 基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort&#…...
汉明距离Java解法
两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。 给你两个整数 x 和 y,计算并返回它们之间的汉明距离。 例: 输入:x 1, y 4 输出:2 解释: 1 (0 0 0 1) 4 (0 1 0 0) ↑ ↑ 上…...

Netty服务端请求接受过程源码剖析
目标 服务器启动后,客户端进行连接,服务器端此时要接受客户端请求,并且返回给客户端想要的请求,下面我们的目标就是分析Netty 服务器端启动后是怎么接受到客户端请求的。我们的代码依然与上一篇中用同一个demo, 用io.…...

金三银四春招特供|高质量面试攻略
🔰 全文字数 : 1万5千 🕒 阅读时长 : 20min 📋 关键词 : 求职规划、面试准备、面试技巧、谈薪职级 👉 公众号 : 大摩羯先生 本篇来聊聊一个老生常谈的话题————“面试”。利用近三周工作午休时间整理了这篇洋洋洒洒却饱含真诚…...

搭建Hexo博客-第4章-绑定自定义域名
搭建Hexo博客-第4章-绑定自定义域名 搭建Hexo博客-第4章-绑定自定义域名 搭建Hexo博客-第4章-绑定自定义域名 在这一篇文章中,我将会介绍如何给博客绑定你自己的域名。其实绑定域名本应该很简单的,但我当初在这上走了不少弯路,所以我觉得有…...
lightdb-sql拦截
文章目录LightDB - sql 审核拦截一 简介二 参数2.1 lightdb_sql_mode2.2 lt_firewall.lightdb_business_time三 规则介绍及使用3.1 select_without_where3.1.1 案例3.2 update_without_where/delete_without_where3.2.1 案例3.3 high_risk_ddl3.3.1 案例LightDB - sql 审核拦截…...

二进制中1的个数-剑指Offer-java位运算
一、题目描述编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 1 的个数(也被称为 汉明重量).)。提示:请注意,在某些语言(如 Java&…...

学自动化测试可以用这几个练手项目
练手项目的业务逻辑比较简单,只适合练手,不能代替真实项目。 学习自动化测试最难的是没有合适的项目练习。 测试本身既要讲究科学,又有艺术成分,单单学几个 api 的调用很难应付工作中具体的问题。 你得知道什么场景下需要添加显…...

2023年保健饮品行业分析:市场规模不断攀升,年度销额增长近140%
随着人们健康意识的不断增强,我国保健品市场需求持续增长,同时,保健饮品的市场规模也在不断攀升。 根据鲸参谋电商数据显示,2022年度,京东平台上保健饮品的年度销量超60万件,同比增长了约124%;该…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...

密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...