对gpt的简单认识
1.gpt是什么?
GPT(Generative Pre-trained Transformer 生成式预训练Transformer模型)是一种基于Transformer架构的预训练语言模型,由OpenAI开发。GPT模型以无监督学习的方式使用大规模语料库进行预训练,并具有生成文本和理解文本的能力。
GPT模型的核心组件是Transformer架构,它由编码器和解码器组成。编码器用于将输入序列转换为隐藏表示,解码器则根据隐藏表示逐步生成输出序列。每个编码器和解码器层包含多头自注意力机制和前馈神经网络。自注意力机制允许模型在生成输出时对输入序列的不同部分进行加权关注,从而更好地捕获上下文信息。
GPT模型的预训练过程分为两个阶段:预训练和微调。在预训练阶段,模型通过无监督学习从大规模的语料库中学习语言知识。模型通过掩码语言建模任务,即遮盖部分输入单词并预测它们,来学习单词之间的关联性。在微调阶段,模型通过在特定任务上进行有监督的训练,如问答、文本分类或机器翻译等,来提高模型性能。
GPT模型的一个重要特点是可以生成连贯、语法正确的文本。该模型在各种自然语言处理任务上取得了出色的表现,如机器翻译、文本摘要、对话系统等。此外,通过在生成文本中引入条件信息,GPT模型还可用于生成特定主题或风格的文本。
看了上面的东西,肯定很懵逼,特别是预训练和微调是什么意思,下面举一个和人类学习相关的例子就会明白了。
假设有一个学生叫小明。首先,小明进入学校后,他会在课堂上通过被动接收知识的方式进行预训练。在这个阶段,老师会向他传授广泛的知识,比如语言、科学、历史等。虽然小明不一定能完全理解所有的知识,但他开始了对各个领域的建模。
随后,在学习过程中,小明可能会参加各种特定的任务或项目,例如写作文、解决数学问题或进行实验。这些任务相当于GPT模型的微调阶段,目的是帮助小明将之前学到的知识应用到具体的问题上。通过反馈和指导,他逐渐提高自己在特定任务中的表现,并改善他的技能。
类比中的预训练阶段强调了模型(或学生)在大量数据中无监督地学习语言和信息的能力,而微调阶段则重点放在了任务特定的有监督学习上,以提高模型(或学生)在具体任务中的性能。
需要注意的是,这个类比只是为了更好地理解GPT模型的预训练和微调过程,并不意味着GPT模型像人类一样真正理解语言。模型的学习机制与人类的学习过程有所不同,因为GPT模型是基于统计概率建模的,并没有意识或情感。
总结一下:gpt和人一样先进行无监督学习了大量的基础知识,如单个词,词语,句子等,然后在让它有监督的学习,如:让它写作,然后告诉它文章,哪块不好,哪块好;就是这样不断的微调逐步提高它的能力。
2.当我们向GPT提出一个问题时,发生了什么?
当我们向GPT提出一个问题时,它会通过以下步骤进行工作:
-
输入编码:首先,问题被转化为模型可以理解的输入编码。这通常涉及将文本转换为对应的词嵌入或标记,并进行适当的编码处理。
-
前向传播:经过输入编码后,问题会通过模型的前向传播过程进行处理。在前向传播过程中,问题的编码会经过一系列层和组件,如自注意力机制和前馈神经网络层。这些层和组件根据学习到的权重参数,对输入进行处理以获取隐藏表示或生成下一个词的概率分布。
-
生成输出:根据模型的设计和任务要求,前向传播过程可能会在每个时间步长生成一个单词或标记,也可能是在整个序列上生成一次性的输出。模型根据当前已生成的内容、历史上下文和学习到的知识,预测下一个最有可能的单词或标记。
-
反复迭代:在生成输出后,可以将其作为输入的延续,与问题继续进行前向传播和生成输出的迭代过程。这样,模型可以生成连贯的文本,并考虑上下文信息来提供更合理的回答。
需要注意的是,GPT模型并没有真正的理解问题,它仅基于预训练过程中学到的语言知识和模式来生成输出。因此,在处理问题时,GPT模型可能面临一些挑战,例如理解问题的多义性、正确理解上下文和避免生成不准确或不合适的回答。因此,对于实际应用中的问题,需要进行适当的后处理或评估来确保生成的结果的质量和准确性。
以上只是个人的简单认识!
相关文章:
对gpt的简单认识
1.gpt是什么? GPT(Generative Pre-trained Transformer 生成式预训练Transformer模型)是一种基于Transformer架构的预训练语言模型,由OpenAI开发。GPT模型以无监督学习的方式使用大规模语料库进行预训练,并具有生成文…...
java类和对象详解(1)
面向对象的初步认知 什么是面向对象 Java是一门纯面向对象的语言(Object Oriented Program, 简称OOP),在面向对象的世界里,一切皆为对象。面向对象是解决问题的一种思想,主要依靠对象之间的交互完成一件事情。 用面向对象的思想来涉及程序,更…...
RxJava 倒计时,轮询器
笔记 倒计时 /*** 短信倒计时** param s*/private Subscription subscription30;public void startCountdownFinishRx30(int s) {clearFinishSubscription30();subscription30 Observable.interval(0, 1, TimeUnit.SECONDS).take(s 1).map(new Func1<Long, Long>() {O…...
SE-Net注意力机制
📌本次任务:了解SE-Net原理 SE-Net 是 ImageNet 2017(ImageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。(这篇论文是2019年的,应该是后续做了更新) 一…...
【Lua学习笔记】Lua进阶——垃圾回收
按照唐老师的课程本来要讲自带库的,但是想想这东西能看文档,ctrl左键还能看注解,并且最重要的许多自带库的方法基本大部分语言都有,其实看看就能懂了。所以还是重点讲讲垃圾回收 文章目录 GC辅助垃圾回收collectgarbage增量模式分…...
session和cookie
cookie和session结合使用 web开发发展至今,cookie和session的使用已经出现了一些非常成熟的方案。在如今的市场或者企业里,一般有两种存储方式: 1、存储在服务端:通过cookie存储一个session_id,然后具体的数据则是保…...
P7243 最大公约数
题目 思路 利用曼哈顿原理求离(x,y)最远的点 代码 #include<bits/stdc.h> using namespace std; #define int long long #define INF 0x3f3f3f3f const int maxn2005; int gcd(int a,int b) { return b?gcd(b,a%b):a; } int n,m; i…...
ES6基础知识九:你是怎么理解ES6中Module的?使用场景?
一、介绍 模块,(Module),是能够单独命名并独立地完成一定功能的程序语句的集合(即程序代码和数据结构的集合体)。 两个基本的特征:外部特征和内部特征 外部特征是指模块跟外部环境联系的接口…...
TensorFlow项目练手(三)——基于GRU股票走势预测任务
项目介绍 项目基于GRU算法通过20天的股票序列来预测第21天的数据,有些项目也可以用LSTM算法,两者主要差别如下: LSTM算法:目前使用最多的时间序列算法,是一种特殊的RNN(循环神经网络)…...
微信小程序页面传值为对象[Object Object]详解
微信小程序页面传值为对象[Object Object]详解 1、先将传递的对象转化为JSON字符串拼接到url上2、在接受对象页面进行转译3、打印结果 1、先将传递的对象转化为JSON字符串拼接到url上 // info为对象 let stationInfo JSON.stringify(info) uni.navigateTo({url: /pages/statio…...
Redis篇
文章目录 Redis-使用场景1、缓存穿透2、缓存击穿3、缓存雪崩4、双写一致5、Redis持久化6、数据过期策略7、数据淘汰策略 Redis-分布式锁1、redis分布式锁,是如何实现的?2、redisson实现的分布式锁执行流程3、redisson实现的分布式锁-可重入4、redisson实…...
Entity Framework(EF)查询
一、In 查询 var list = dbContext.Users.Where(u => new int[] {1, 2, 3, 5,...
使用Pytest生成HTML测试报告
背景 最近开发有关业务场景的功能时,涉及的API接口比较多,需要自己模拟多个业务场景的自动化测试(暂时不涉及性能测试),并且在每次测试完后能够生成一份测试报告。 考虑到日常使用Python自带的UnitTest,所…...
DSA之图(4):图的应用
文章目录 0 图的应用1 生成树1.1 无向图的生成树1.2 最小生成树1.2.1 构造最小生成树1.2.2 Prim算法构造最小生成树1.2.3 Kruskal算法构造最小生成树1.2.4 两种算法的比较 1.3 最短路径1.3.1 两点间最短路径1.3.2 某源点到其他各点最短路径1.3.3 Dijkstra1.3.4 Floyd 1.4 拓扑排…...
[SQL挖掘机] - 窗口函数 - row_number
介绍: row_number() 是一种常用的窗口函数,它为结果集中的每一行分配一个唯一的数字。这个数字的分配基于指定的排序顺序,并且不会跳过相同的排名。 用法: row_number() 函数的语法如下: row_number() over ([partition by 列名1, 列名2,…...
【论文阅读】通过解缠绕表示学习提升领域泛化能力用于主题感知的作文评分
摘要 本文工作聚焦于从领域泛化的视角提升AES模型的泛化能力,在该情况下,目标主题的数据在训练时不能被获得。本文提出了一个主题感知的神经AES模型(PANN)来抽取用于作文评分的综合的表示,包括主题无关(pr…...
二分查找P1873 [COCI2011-2012#5] EKO / 砍树
P1873 [COCI2011-2012#5] EKO / 砍树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 这个题就是给新手练手的,在那个位置上在进行,寻找合适的砍树高度,下面在介绍一个二分查找的模板 int binarySearch(vector<int>& nums, int t…...
【BOOST程序库】正则表达式相关操作
基本概念这里不解释了,代码中详细解释了BOOST程序库中对于正则表达式常用方法的详细用法。 #include <iostream> #include <string>//正则表达式头文件 #include <boost/xpressive/xpressive.hpp>int main() {//声明正则:boost::pres…...
阿里云国际版在使用过程中应该注意什么呢?
为确保系统稳定性,用户不得进行以下操作。否则,阿里云可能无法解决由以下违规操作引起的问题: 1) Windows系统中的PV Drivers 程序不可删除 PV Drivers程序为服务器虚拟化驱动程序,请不要针对该程序进行任何操作,如果删…...
Flutter Provider 共享状态管理
在使用Provider的时候,我们主要关心三个概念: ChangeNotifier:真正数据(状态)存放的地方ChangeNotifierProvider:Widget树中提供数据(状态)的地方,会在其中创建对应的Ch…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...
