DSA之图(4):图的应用
文章目录
- 0 图的应用
- 1 生成树
- 1.1 无向图的生成树
- 1.2 最小生成树
- 1.2.1 构造最小生成树
- 1.2.2 Prim算法构造最小生成树
- 1.2.3 Kruskal算法构造最小生成树
- 1.2.4 两种算法的比较
- 1.3 最短路径
- 1.3.1 两点间最短路径
- 1.3.2 某源点到其他各点最短路径
- 1.3.3 Dijkstra
- 1.3.4 Floyd
- 1.4 拓扑排序
- 1.4.1 有向无环图DAG
- 1.4.2 AOV网
- 1.5 关键路径
- 1.5.1 求解关键路径
0 图的应用
1 生成树
生成树:所有顶点均由边连接在一起,但不存在回路的图。
也就是两个条件,顶点条件和边数条件,顶点都要保持连通,边数达到最少,没有回路。
如右边的图,随便再加一条边就有回路了。
所有生成树都具有以下的共同特点:
- 生成树的顶点个数与图的顶点个数相同;
- 生成树是图的极小连通子图,去掉一条边则非连通;
- 一个有 n n n个顶点的连通图的生成树有 n − 1 n-1 n−1条边;
- 生成树中任意两个顶点间的路径是唯一的;
- 含有 n n n个顶点 n − 1 n-1 n−1条边的图不一定是生成树,如下图所示
因为生成树是连通的,每个顶点都要用边相连,上图是不连通的,有两个连通分量。
1.1 无向图的生成树
生成树要包含所有顶点,那么对图进行遍历,把走过的边全部加入到图当中。
遍历则采用DFS与BFS都可以。
用DFS生成的生成树就是DFS生成树。
用BFS生成的生成树就是BFS生成树。
综上
1.2 最小生成树
最小生成树:给定一无向网络在该网的所有生成树中,使得各边权值之和最小的那棵生成树称为该网的最小生成树,也叫最小代价生成树。
最小生成树可能是不唯一的。
1.2.1 构造最小生成树
构造最小生成树的算法很多,其中多数算法都利用了MST(Minimum Spanning Tree)的性质。
MST性质:
其实就是贪心算法,不断去找权值最小的边。
设 N = ( V , E ) N=(V, E) N=(V,E)以目是一个连通网, U U U是顶点集 V V V的一个非空子集。若边 ( u , v ) (u, v) (u,v)是一条具有最小权值的边,其中 u ∈ U , v ∈ V − U u∈U,v∈V-U u∈U,v∈V−U则必存在一棵包含边 ( u , v ) (u,v) (u,v)的最小生成树。
举例
现在 U = { v 1 } U=\{v_1\} U={v1},所以 V − U = { v 2 , v 3 , v 4 , v 5 , v 6 } V-U=\{v_2,v_3,v_4,v_5,v_6\} V−U={v2,v3,v4,v5,v6},所以 u ∈ U , v ∈ V − U u∈U,v∈V-U u∈U,v∈V−U当中,其中从 v 1 v_1 v1到 v 3 v_3 v3是最小的,权值为1,存在这个权值最小的边,这条边一定会包含在某个最下生成树当中。
1.2.2 Prim算法构造最小生成树
算法思想:
1.2.3 Kruskal算法构造最小生成树
相比Prim算法更加贪心,直截了当贪心,前提不成环。这次开始就把所有顶点都加入到最小生成树上面去。不过并不包括边,这时边的集合都是空集,没包含边,彼此之间不连通。
然后直接在边集合当中选权值最小的边,直接加入。
以此类推,选到所有顶点都连通为止(前提不能形成回路)(n个点,n-1条边)。
1.2.4 两种算法的比较
Prim是选择点加入的,而Kruskal是选择边的。选择边的时候和顶点数是没关系的。
1.3 最短路径
1.3.1 两点间最短路径
从起点走向终点,并非要n个节点都包括,也并非要n-1条边。
直到找到路径长度最短的一条路径。
这种最短路径也称为单源的最短路径,采用Dijkstra算法。
1.3.2 某源点到其他各点最短路径
所有顶点的最短路径,统一使用Floyd弗洛伊德算法。
1.3.3 Dijkstra
其时间复杂度为 O ( n 3 ) O(n^3) O(n3)
按照路径长度递增次序产生最短路径,启发式贪心算法。
启发式算法,先找最短的,后面再及时更新,具体过程可以看王老师的视频。
1.3.4 Floyd
其时间复杂度为 O ( n 3 ) O(n^3) O(n3)
算法思想:
- 逐个顶点试探
- 从少,到的所有可能存在的路径中
- 选出一条长度最短的路径
求最短路径的步骤:
初始时设置一个 n n n阶方阵,令其对角线元素(到自身的路径)为0,若存在弧 < v i , v j > <v_i, v_j> <vi,vj>,则对应元素为权值;否则为 ∞ ∞ ∞。
逐步试着在原直接路径中增加中间顶点,若加入中间顶点后路径变短,则修改之;否则,维持原值。所有顶点试探完毕,算法结束。
1.4 拓扑排序
1.4.1 有向无环图DAG
AOV网以顶点表示活动;AOE网用弧表示活动(子工程)。
AOV网用来解决拓扑排序,AOE网用来解决关键路径问题。
拓扑排序的一个小例子:
1.4.2 AOV网
问题:如何判断AOV网中是否存在回路?
答:
所有顶点都能加入拓扑排序的话,就一定没有网。
拓扑排序。
将网变成一个线性序列的过程就是拓扑排序。
拓扑排序的步骤:
- 首先构建好AOV网
- 在有向图中选一个没有前驱的顶点且输出(例如C1和C9)
- 假设选了C1,在有向图当中删除该顶点和所有以它为尾的弧(C1发出的弧)(即C1与C2,C4,C12的弧)
- 重复上述两步,直至全部顶点均已输出;或者当图中不存在无前驱的顶点为止
1.5 关键路径
制定计划,查找关键路径。
关键路径就是从源点到汇点路径长度(权值之和)最长(大)的路径。
按照任务需求,构建有权图。
举例:
对于上方AOE网,我们关心两个问题:
- 完成整项女程至少需要多少时间?
- 哪些活动是影响工程进度的关键?
以上答为关键路径与路径长度。
1.5.1 求解关键路径
四个有用的量:
求关键路径的步骤:
相关文章:

DSA之图(4):图的应用
文章目录 0 图的应用1 生成树1.1 无向图的生成树1.2 最小生成树1.2.1 构造最小生成树1.2.2 Prim算法构造最小生成树1.2.3 Kruskal算法构造最小生成树1.2.4 两种算法的比较 1.3 最短路径1.3.1 两点间最短路径1.3.2 某源点到其他各点最短路径1.3.3 Dijkstra1.3.4 Floyd 1.4 拓扑排…...
[SQL挖掘机] - 窗口函数 - row_number
介绍: row_number() 是一种常用的窗口函数,它为结果集中的每一行分配一个唯一的数字。这个数字的分配基于指定的排序顺序,并且不会跳过相同的排名。 用法: row_number() 函数的语法如下: row_number() over ([partition by 列名1, 列名2,…...

【论文阅读】通过解缠绕表示学习提升领域泛化能力用于主题感知的作文评分
摘要 本文工作聚焦于从领域泛化的视角提升AES模型的泛化能力,在该情况下,目标主题的数据在训练时不能被获得。本文提出了一个主题感知的神经AES模型(PANN)来抽取用于作文评分的综合的表示,包括主题无关(pr…...
二分查找P1873 [COCI2011-2012#5] EKO / 砍树
P1873 [COCI2011-2012#5] EKO / 砍树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 这个题就是给新手练手的,在那个位置上在进行,寻找合适的砍树高度,下面在介绍一个二分查找的模板 int binarySearch(vector<int>& nums, int t…...
【BOOST程序库】正则表达式相关操作
基本概念这里不解释了,代码中详细解释了BOOST程序库中对于正则表达式常用方法的详细用法。 #include <iostream> #include <string>//正则表达式头文件 #include <boost/xpressive/xpressive.hpp>int main() {//声明正则:boost::pres…...
阿里云国际版在使用过程中应该注意什么呢?
为确保系统稳定性,用户不得进行以下操作。否则,阿里云可能无法解决由以下违规操作引起的问题: 1) Windows系统中的PV Drivers 程序不可删除 PV Drivers程序为服务器虚拟化驱动程序,请不要针对该程序进行任何操作,如果删…...
Flutter Provider 共享状态管理
在使用Provider的时候,我们主要关心三个概念: ChangeNotifier:真正数据(状态)存放的地方ChangeNotifierProvider:Widget树中提供数据(状态)的地方,会在其中创建对应的Ch…...
std vector 用法
使用vector,需添加头文件#include,要使用sort或find,则需要添加头文件#include。函数封装在命名空间std中,使用:using namespace std; 1、vector的初始化 std::vector<int> nVec; // 空对象 std::vecto…...
vue vite ts electron ipc addon-napi c arm64
初始化 因网络问题建议使用 cnpm 代替 npm npm init vue # 全选 yes npm i # 进入项目目录后使用 npm i electron electron-builder -D npm i commander -D # 额外组件electron 新建 plugins、src/electron 文件夹 添加 src/electron/background.ts 属于主进程 ipcMain.o…...

机器人科普--AGILOX 叉车
机器人科普--AGILOX 叉车 1 概述2 导航3 驱动轮组4 叉举参考 1 概述 AGILOX 叉车,不需要画地图路径,很厉害。 2 导航 中间路径自由导航,末端规划出轨迹路线,并使用优良的控制器做轨迹追踪。 AGILOX | 10 Min setu…...

Django的生命周期流程图(补充)、路由层urls.py文件、无名分组和有名分组、反向解析(无名反向解析、有名反向解析)、路由分发、伪静态
一、orm的增删改查方法(补充) 1. 查询resmodels.表名(类名).objects.all()[0]resmodels.表名(类名).objects.filter(usernameusername, passwordpassword).all()res models.表名(类名).objects.first() # 判断,判断数据是否有# res如果查询…...
selenium交互代码
一:selenium交互 用selenium打开网页后,也可以做一系列真人的操作,也就是利用selenium和浏览器进行交互,可利用以下几个函数进行操作: input.send_keys() 传递输入内容给某输入框button.click() 点击某按钮browser.e…...
下载远程服务器文件
业务需求:下载某云盘的视频文件存储到本地 测试代码 RequestMapping("testVideo")public String test() {try {SimpleDateFormat DATE_FORMAT new SimpleDateFormat("yyyy/MM/dd/");//组装本地保存地址StringBuilder filePath new StringBuilder(StoreP…...
[SQL挖掘机] - 索引
介绍: 当你在数据库中进行查询时,索引是一种用于提高查询性能的重要工具。索引是对表中的一列或多列进行排序的数据结构,它可以快速定位到满足特定条件的记录,从而减少了查询所需的时间和资源。 在数据库中使用索引的主要好处包括ÿ…...

C++STL库中的list
文章目录 list的介绍及使用 list的常用接口 list的模拟实现 list与vector的对比 一、list的介绍及使用 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 2. list的底层是双向带头循环链表结构,双向带头循…...

【LeetCode 75】第十七题(1493)删掉一个元素以后全为1的最长子数组
目录 题目: 示例: 分析: 代码运行结果: 题目: 示例: 分析: 给一个数组,求删除一个元素以后能得到的连续的最长的全是1的子数组。 我们可以先单独统计出连续为1的子数组分别长度…...

配置IPv6 over IPv4 GRE隧道示例
组网需求 如图1,两个IPv6网络分别通过SwitchA和SwitchC与IPv4公网中的SwitchB连接,客户希望两个IPv6网络中的PC1和PC2实现互通。 其中PC1和PC2上分别指定SwitchA和SwitchC为自己的缺省网关。 图1 配置IPv6 over IPv4 GRE隧道组网图 配置思路 要实现I…...

Google Earth Engine谷歌地球引擎提取多波段长期反射率数据后绘制折线图并导出为Excel
本文介绍在谷歌地球引擎GEE中,提取多年遥感影像多个不同波段的反射率数据,在GEE内绘制各波段的长时间序列走势曲线图,并将各波段的反射率数据与其对应的成像日期一起导出为.csv文件的方法。 本文是谷歌地球引擎(Google Earth Engi…...

第三大的数
414、第三大的数 class Solution {public int thirdMax(int[] nums) {Arrays.sort(nums);int tempnums[0];int ansnums[0];int count 0;// if(nums.length<3){// return nums[nums.length-1];// }// else {for(int inums.length-1;i>0;i--){if (nums[i]>nums[i…...
正则表达式中的方括号[]有什么用?
在正则表达式中,方括号 [] 是用于定义字符集合的元字符。它在正则表达式中有以下作用: 匹配字符集合中的任意一个字符:方括号中列出的字符,表示在这个位置可以匹配这些字符中的任意一个。例如,[abc] 将匹配任意一个字符…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
Linux中INADDR_ANY详解
在Linux网络编程中,INADDR_ANY 是一个特殊的IPv4地址常量(定义在 <netinet/in.h> 头文件中),用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法,允许套接字监听所有本地IP地址上的连接请求。 关…...