动手学深度学习(一)预备知识
目录
一、数据操作
1. N维数组样例
2. 访问元素
3. 基础函数
(1) 创建一个行向量
(2)通过张量的shape属性来访问张量的形状和元素总数
(3)reshape()函数
(4)创建全0、全1、其他常量或从特定分布中随机采样的数字组成的张量
(5)标准运算(张量间的标准运算,都是按元素运算)
(6)拼接函数cat
(7)求和函数sum
(8)矩阵的转置
(9)复制张量
(10)点积,矩阵-向量积和矩阵乘法
(11)范数
4.广播机制
5.转化为Numpy张量
课程推荐:跟李沐学AI的个人空间-跟李沐学AI个人主页-哔哩哔哩视频
一、数据操作
1. N维数组样例
(1)0-d 标量
1.0
(2)1-d 向量
[1.0, 2.7, 3.4]
(3)2-d 矩阵
[[1.0, 2.7, 3.4][5.0, 0.2, 4.6][4.3, 8.5, 0.2]]
(4)3-d RGB图片(CxHxW)
[[[1.0,2.7,3.4][5.0,0.2,4.6][4.3,8.5,0.2]][[3.2, 5.7, 3.4][5.4, 6.2, 3.2][4.1, 3.5, 6.2]]]
(5)4-d 一个RGB图片批量(BxCxHxW)
(6)5-d 一个视频批量(TxBxCxHxW)
2. 访问元素
切片规则:[start : end : step]
start : 起始索引,从0开始,-1表示结束。
end:结束索引,不包含。
step:步长,即范围内每次取值的间隔;步长为正时,从左向右取值。步长为负时,反向取值。
(1)访问一个元素
[1, 2]
>>> x = torch.arange(1, 17).reshape(4, 4)
>>> x[1, 2]
tensor(7)
(2)访问一行
[1,:]
>>> x[1,:]
tensor([5, 6, 7, 8])
(3)访问一列
[:,1]
>>> x[:,1]
tensor([ 2, 6, 10, 14])
(4)子区域
[1:3,1:]
>>> x[1:3,1:]
tensor([[ 6, 7, 8],[10, 11, 12]])
[::3,::2]
>>> x[::3,::2]
tensor([[ 1, 3],[13, 15]])
3. 基础函数
(1) 创建一个行向量
x = torch.arange(12)
x #tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
(2)通过张量的shape属性来访问张量的形状和元素总数
x.shape # torch.Size([12])
x.size() # torch.Size([12])
(3)reshape()函数
改变一个张量的形状 。
X = x.reshape(3,4)
X
# tensor([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11]])
(4)创建全0、全1、其他常量或从特定分布中随机采样的数字组成的张量
全0: 第一个参数为张量的shape。
torch.zeros((2,3,4))
# tensor([[[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]],# [[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]]])
全1:
torch.ones((1,3,4))
# tensor([[[1., 1., 1., 1.],
# [1., 1., 1., 1.],
# [1., 1., 1., 1.]]])
其他常量(指定值):
torch.tensor([[1,2],[2,1]])
# tensor([[1, 2],
# [2, 1]])
(5)标准运算(张量间的标准运算,都是按元素运算)
x = torch.tensor([1.0, 2, 3, 4])
y = torch.tensor([5, 6, 7, 8])
x+y,x-y,x*y,x/y,x**y
# (tensor([ 6., 8., 10., 12.]), tensor([-4., -4., -4., -4.]), tensor([ 5., 12., 21., 32.]), tensor([0.2000, 0.3333, 0.4286, 0.5000]), tensor([1.0000e+00, 6.4000e+01, 2.1870e+03, 6.5536e+04]))
比较运算符,按位比较
x == y
# tensor([False, False, False, False])
* 按位相乘,称为哈达玛乘(数学符号)。
>>> A = torch.arange(9).reshape(3,3)
>>> A
tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])
>>> B = torch.arange(9,18).reshape(3,3)
>>> B
tensor([[ 9, 10, 11],[12, 13, 14],[15, 16, 17]])
>>> A * B
tensor([[ 0, 10, 22],[ 36, 52, 70],[ 90, 112, 136]])
(6)拼接函数cat
torch.cat(inputs, dim=?)
- inputs : 待连接的张量序列,可以是任意相同
Tensor
类型的python 序列- dim : 选择的扩维, 必须在
0
到len(inputs[0])
之间,沿着此维连接张量序列。
dim=0,表示按第0维方向拼接,即按行方向拼接;dim=1,表示按第0维方向拼接,即按列方向拼接;dim=3……
y = torch.tensor(([[4, 1],[3, 5]]))
x = torch.arange(4, dtype=torch.float32).reshape(2, 2)
torch.cat((x, y), dim=0)
# tensor([[0., 1.],
# [2., 3.],
# [4., 1.],
# [3., 5.]])torch.cat((x, y), dim=1)
# tensor([[0., 1., 4., 1.],
# [2., 3., 3., 5.]])
(7)求和函数sum
参数1,axis:指定求和维度,张量按该维度求和,并将该维度消去。
如,张量形状为[2, 5, 4],axis=0时,求和后,张量形状为[5, 4]。
参数2,keepdims:默认为False,是否保留axis要消去的维度。keepdims=True时,将要消去的维度长度置为1。
如,张量形状为[2, 5, 4],axis=0,keepdims=True时,求和后,张量形状为[1,5, 4]。
1)张量中的所有元素求和:
x = torch.tensor([1.0, 2, 3, 4])
x.sum()
# tensor(10.)
2)按行(第0维)求和:
>>> A = torch.arange(9).reshape(3,3)
>>> A
tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])>>> A.sum(axis=0)
tensor([ 9, 12, 15])
3)按列(第1维)求和:
>>> A.sum(axis=1)
tensor([ 3, 12, 21])
2维求和,3维……
4)keepdims(保留维度):
按某一维度求和时,保留该维度,该维度长度置为1。
>>> A
tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])>>> A.sum(axis=1).size()
torch.Size([3])>>> A.sum(axis=1,keepdims=True).size()
torch.Size([3, 1])>>> A.sum(axis=1,keepdims=True)
tensor([[ 3],[12],[21]])
# 按列求均值
>>> A/A.sum(axis=1,keepdims=True)
tensor([[0.0000, 0.3333, 0.6667],[0.2500, 0.3333, 0.4167],[0.2857, 0.3333, 0.3810]])
5)指定多维度求和
A.sum(axis=[n, m]),按n和m维度求和,求和结果中其他维度不变,将n,m维度消去。
>>> A = torch.arange(8).reshape(2,2,2)
>>> A
tensor([[[0, 1],[2, 3]],[[4, 5],[6, 7]]])# 保留第1维度
>>> A.sum(axis=[0,2]).size()
torch.Size([2])# 使用keepdims保留要消去的维度,将维度长度置为1
>>> A.sum(axis=[0,2],keepdims=True).size()
torch.Size([1, 2, 1])# 输出
>>> A.sum(axis=[0,2])
tensor([10, 18])
(8)矩阵的转置
>>> import torch
>>> B = torch.tensor(([1,2,3],[4,5,6],[7,8,9]))
>>> B
tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
>>> B.T
tensor([[1, 4, 7],[2, 5, 8],[3, 6, 9]])
(9)复制张量
“=”,复制之后的两个张量共用一个内存地址。
>>> A = B
>>> id(B)
1950198475976
>>> id(A)
1950198475976
>>> B[0]=10
>>> B
tensor([10, 2, 3, 4, 5, 6, 7, 8, 9])
>>> A
tensor([10, 2, 3, 4, 5, 6, 7, 8, 9])
clone(),重新分配内存地址。
>>> A=B.clone()
>>> id(A)
1950198519512
>>> id(B)
1950198475976
(10)点积,矩阵-向量积和矩阵乘法
向量点积—dot函数(1维):
>>> A = torch.arange(4)
>>> A
tensor([0, 1, 2, 3])
>>> B
tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])
>>> B = torch.arange(4, 8)
>>> B
tensor([4, 5, 6, 7])
>>> torch.dot(A, B)
tensor(38)
矩阵点积(2维):
按位相乘求和。
>>> A = torch.arange(9).reshape(3,3)
>>> B = torch.arange(9,18).reshape(3,3)>>> torch.sum(A * B)
tensor(528)
矩阵-向量积(mv函数):
>>> B = torch.arange(9,18).reshape(3,3)
>>> C = torch.arange(3)>>> torch.mv(B, C)
tensor([32, 41, 50])
矩阵乘法(mm函数):
>>> torch.mm(A, B)
tensor([[ 42, 45, 48],[150, 162, 174],[258, 279, 300]])
(11)范数
L1范数:
向量元素的绝对值之和。
>>> u = torch.tensor([3.0, -4.0])
>>> torch.abs(u).sum()
tensor(7.)
L2范数:
向量元素平方和的平方根。
>>> u = torch.tensor([3.0, -4.0])
>>> torch.norm(u)
tensor(5.)
弗罗贝尼乌斯-范数(F-范数):
矩阵元素的平方和的平方根。
>>> torch.norm(torch.ones(4, 9))
tensor(6.)
4.广播机制
1.通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状。
2.对于生成的数组执行按元素操作。
y = torch.arange(12).reshape(3,2,2)
y
# tensor([[[ 0, 1],
# [ 2, 3]],
#
# [[ 4, 5],
# [ 6, 7]],# [[ 8, 9],
# [10, 11]]])x = torch.tensor([[1,2],[3,4]])
x# tensor([[1, 2],
# [3, 4]])x + y# tensor([[[ 1, 3],
# [ 3, 5]],# [[ 5, 7],
# [ 7, 9]],# [[ 9, 11],
# [11, 13]]])
5.转化为Numpy张量
A = x.numpy()
type(A)
# <class 'numpy.ndarray'>
相关文章:

动手学深度学习(一)预备知识
目录 一、数据操作 1. N维数组样例 2. 访问元素 3. 基础函数 (1) 创建一个行向量 (2)通过张量的shape属性来访问张量的形状和元素总数 (3)reshape()函数 (4)创建全0、全1、…...

item_get-KS-获取商品详情
一、接口参数说明: item_get-根据ID取商品详情 ,点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/ks/item_get 名称类型必须描述keyString是调用key(http://o0b.cn/…...

[华为OD] 最小传输时延(dijkstra算法)
明天就要面试了我也太紧张了吧 但是终于找到了一个比较好理解的dijkstra的python解法,让我快点把它背下来!!!! 文章目录 题目dijkstra算法的python实现python解答dfs解法dijkstra解法 题目 先把题目放出来 某通信网络…...

问道管理:总资产大于总市值好吗?
在财政领域,总财物和总市值是两个非常重要的指标。总财物是指公司所有的财物,包括固定财物、流动财物、无形财物等,而总市值则是指公司股票在商场上的总价值。当总财物大于总市值时,这是否是一个好的信号呢?咱们将从多…...

IBM Spectrum LSF (“LSF“ ,简称为负载共享设施) 用户案例
IBM Spectrum LSF (“LSF” ,简称为负载共享设施) 用户案例 IBM Spectrum LSF (“LSF” ,简称为负载共享设施) 软件是业界领先的企业级软件。 LSF 在现有异构 IT 资源之间分配工作,以创建共享,可扩展且容错的基础架构,…...

Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...

Gis入门,使用起止点和两个控制点生成三阶贝塞尔曲线(共四个控制点,线段转曲线)
前言 本章讲解如何在gis地图中使用起止点和两个控制点(总共四个控制点)生成三阶贝塞尔曲线。 二阶贝塞尔曲线请参考上一章《Gis入门,如何根据起止点和一个控制点计算二阶贝塞尔曲线(共三个控制点)》 贝塞尔曲线(Bezier curve)介绍 贝塞尔曲线(Bezier curve)是一种…...

Web-7-深入理解Cookie与Session:实现用户跟踪和数据存储
深入理解Cookie与Session:实现用户跟踪和数据存储 今日目标 1.掌握客户端会话跟踪技术Cookie 2.掌握服务端会话跟踪技术Sesssion 1.会话跟踪技术介绍 会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断…...

Springboot设置Https
1、修改配置文件application.yml,并将*.jks放到resource目录下。 server:port: 8080ssl:key-store: classpath:*.jkskey-store-password: *key-store-type: JKSenabled: truekey-alias: boe.com.cn2、添加http转https的配置 Configuration public class TomcatCon…...

Windows 使用 Linux 子系统,轻轻松松安装多个linux
Windows Subsystem for Linux WSL 简称WSL,是一个在Windows 10\11上能够运行原生Linux二进制可执行文件(ELF格式)的兼容层。它是由微软与Canonical公司合作开发,其目标是使纯正的Ubuntu、Debian等映像能下载和解压到用户的本地计算机&#…...

中级课程——弱口令(认证崩溃)
文章目录 什么是弱口令密码生成器分类暴力破解万能密码测试环境工具 什么是弱口令 密码生成器 分类 暴力破解 万能密码 or true --测试环境 工具 九头蛇,超级弱口令爆破工具,bp,...

web自动化测试进阶篇05 ——— 界面交互场景测试
😏作者简介:博主是一位测试管理者,同时也是一名对外企业兼职讲师。 📡主页地址:【Austin_zhai】 🙆目的与景愿:旨在于能帮助更多的测试行业人员提升软硬技能,分享行业相关最新信息。…...

NICE-SLAM: Neural Implicit Scalable Encoding for SLAM论文阅读
论文信息 标题:NICE-SLAM: Neural Implicit Scalable Encoding for SLAM 作者:Zihan Zhu, Songyou Peng,Viktor Larsson — Zhejiang University 来源:CVPR 代码:https://pengsongyou.github.io/nice-slam…...

cmake 配置Visual studio的调试命令
配置代码如截图: set_property(TARGET ${TARGET_NAME} PROPERTY VS_DEBUGGER_COMMAND "./consoleTest.exe") set_property(TARGET ${TARGET_NAME} PROPERTY VS_DEBUGGER_COMMAND_ARGUMENTS "./config/labelDriver.cfg") set_propert…...

MPDIoU: A Loss for Efficient and Accurate Bounding BoxRegression--论文学习笔记
超越GIoU/DIoU/CIoU/EIoU MPDIoU让YOLOv7和YOLACT双双涨点 目标检测上的指标对比: 论文地址: [2307.07662] MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression (arxiv.org) 摘要 边界框回归(Bounding Box Regression&am…...

【Uniapp 的APP热更新】
Uniapp 的APP热更新功能依赖于其打包工具 HBuilder,具体步骤如下: 1. 在 HBuilder 中构建并打包出应用程序 具体步骤: 1.点击发行,点击制作wgt包 2.根据需求修改文件储存路径和其他配置,点击确定 3.等待打包完成&a…...

MySQL主从复制配置
Mysql的主从复制至少是需要两个Mysql的服务,当然Mysql的服务是可以分布在不同的服务器上,也可以在一台服务器上启动多个服务。 (1)首先确保主从服务器上的Mysql版本相同 (2)在主服务器上,创建一个充许从数据库来访问的用户slave,密码为:123456 ,然后使用REPLICATION SLAV…...

Linux - 添加普通用户为信任用户
1.添加用户 在Linux系统中,可以使用以下步骤添加用户: 打开终端并以root用户身份登录 输入以下命令以创建新用户(请将username替换为您想要创建的用户名): adduser username 设置该用户的密码,使用以下命…...

flask----路由系统
# 1 flask路由系统是基于装饰器的:参数如下 # 2 转换器: # 3 路由系统本质 # 4 endpoint 不传会怎么样,不传会以视图函数的名字作为值,但是如果加了装饰器,所有视图函数名字都是inner,就会出错,使用wrapp…...

驶向专业:嵌入式开发在自动驾驶中的学习之道
导语: 自动驾驶技术在汽车行业中的快速发展为嵌入式开发领域带来了巨大的机遇。作为自动驾驶的核心组成部分,嵌入式开发在驱动汽车的智能化和自主性方面发挥着至关重要的作用。本文将探讨嵌入式开发的学习方向、途径以及未来在自动驾驶领域中的展望。 一、学习方向:…...

Go语言入门:从零开始的快速指南(一)
文章目录 引言Go语言的诞生背景Go 语言的特性安装Go语言环境集成开发环境安装第一个Go程序Go 源代码的特征解读 引言 Go语言(也称为Golang)是一种开源的、静态类型的编程语言,由Google开发。它的设计目标是简单、高效、安全、并且易于学习和…...

Windows7+内网, 安装高版本nodejs,使用vite+vue3+typescript开发项目
前言:vite只支持高版本的nodejs,而高版本的nodejs只支持windows8及以上,且vite还对浏览器版本有兼容问题。以下均为vite官网截图 1、安装好低版本的nodejs win7系统建议安装13.及以下,我的是12.12.0这个版本。nodejs低版本官网下载…...

【C语言day14】
#include<stdio.h>int fun(char* s) {char* t s;while (*t);return(t - s); }int main() {char s[] "abc";int n fun(s);printf("%d\n", n);//4return 0; }循环在*t为0时停止,同时t,t最后会停在字符串结束的’\0’之后的一…...

暑假刷题第19天--8/1
170. 加成序列 - AcWing题库(dfs迭代加深--重点理解) #include<iostream> using namespace std; int n; int a[11]; int dfs(int x,int h){if(x>h1)return 0;if(a[x-1]n)return 1;bool st[130]{};for(int i1;i<x-1;i){for(int j1;j<i;j)…...

Java开发中的------修改密码+忘记密码
目录 1.修改密码 客户端响应 前端vue 后端 controller层 ServiceImpl实现层 2.忘记密码 客户端响应 后端 controller层 serviceImpl实现层 本章需要准备:springcloud项目,依赖,数据库.... 数据库SQL SET FOREIGN_KEY_CHECKS0;-- -…...

ffmpeg安装
简介 FFmpeg是一个开源的音视频处理库,它提供了一系列的工具和API,可以用于处理音视频文件。你可以使用FFmpeg的命令行工具来执行各种音视频处理操作,比如转码、剪辑、合并等。FFmpeg的命令格式通常是:ffmpeg [全局选项] {[输入文…...

Mac电脑目录
System(系统)Applications(应用程序)应用程序目录,默认所有的GUI应用程序都安装在这里User(用户)存放用户的个人资料和配置。每个用户有自己的单独目录Library(资料库)系…...

一起学算法(栈篇)
1.栈的概念 1.栈的定义 栈是仅限在表尾进行插入和删除的线性表,栈又被称为先进后出的线性表,简称“LIFO” 我们这次用数组作为我们栈的底层数据结构,代码会放到结尾供大家参考使用 2.栈顶的定义 栈是一个线性表,我们允许插入…...

Ubuntu开机自启服务systemd.service配置教程(Ubuntu服务)(Linux服务)upstart
文章目录 为什么要将程序配置成服务?1. 自动启动2. 后台运行3. 定时重启4. 简化管理5. 整合系统 版本支持1. Ubuntu 14.04及更早版本:使用upstart作为默认的init系统/etc/rc.local旧版本新版本 2. Ubuntu 15.04到16.04版本:默认使用systemd作…...

大数据课程E4——Flume的Channel
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Channel的作用和配置; ⚪ 掌握Channel的使用方法; ⚪ 掌握Channel的File Channel; ⚪ 掌握Channel的JDBC Channel; ⚪ 掌握Channel的Spillable Memory Channel; 一、Memory Ch…...