当前位置: 首页 > news >正文

从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

       我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。

      另一方面,随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。

      面对这些挑战,当前基于卷积神经网络的影像自动识别取得了令人印象深刻的结果。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。虽然以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易

深度卷积网络知识详解

深度学习在遥感图像识别中的范式和问题

深度学习的历史发展历程

机器学习,深度学习等任务的基本处理流程

卷积神经网络的基本原理

卷积运算的原理和理解

池化操作,全连接层,以及分类器的作用

BP反向传播算法的理解

CNN模型代码详解

特征图,卷积核可视化分析

 

 

PyTorch应用与实践(遥感图像场景分类)

PyTorch简介

动态计算图,静态计算图等机制

PyTorch的使用教程

PyTorch的学习案例

PyTorch的基本使用与API

6.PyTorch图像分类任务讲解

7.不同超参数,如初始化,学习率对结果的影响

8.使用PyTorch搭建神经网络并实现手写数字的分类

9.使用PyTorch修改模型并提升分类模型表现

 

卷积神经网络实践与目标检测 

 深度学习下的遥感影像目标检测基本知识

目标检测数据集的图像和标签表示方式

讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等

无人机影像的植物识别和统计

讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框

架的演变和差异

讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型

现有检测模型「CNN系列」发展小结,包括OHEM、FCN、DCN等模型

卷积神经网络实践与目标检测

 

【FasterRCNN】

一份完整的Faster-RCNN 模型下实现遥感影像的目标检测

讲解数据集的制作过程,包括数据的存储和处理

数据集标签的制作

模型的搭建,组合和训练

检测任数据集在验证过程中的注意事项

卷积神经网络的遥感影像目标检测任务案例

 

 Transformer与遥感影像目标检测

从卷积运算到自注意力运算 self-attention

pytorch实现的自监督模块

从Transformer到Vision Transformer (ViT)

ViT模型在遥感影像中的应用

Transformer的遥感影像目标检测任务案例 【DETR】

Transformer下的新目标检测范式,DETR

各类模型在遥感影像下的对比和调研

一份完整的DETR模型下实现遥感影像的目标检测

讲解针对检测任务的优化策略

深度学习与遥感影像分割任务

深度学习下的遥感影像分割任务的基本概念

讲解FCN,SegNet,U-net等模型的差异

分割模型的发展小结

遥感影像分割任务和图像分割的差异

在遥感影像分割任务中的注意事项

案例

讲解数据集的准备和处理

遥感影像划分成小图像的策略

模型的构建和训练方法

验证集的使用过程中的注意事项

 

 

 

深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

PointNet与PointNet++等模型的基本讲解

点云数据的预处理和划分

点云数据的语义分割

点云数据的预测结果分析

 

 

遥感影像问题探讨与深度学习优化技巧

现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型

从模型演变中讲解实际训练模型的技巧

讲解针对数据的优化策略

讲解针对模型的优化策略

讲解针对训练过程的优化策略

讲解针对检测任务的优化策略

讲解针对分割任务的优化策略

提供一些常用的检测,分割数据集的标注工具

 

基于python多光谱遥感数据处理、图像分类、定量评估及机器学习方法应用

GEE遥感云大数据在林业中的应用与典型案例实践

基于“遥感+”蓝碳储量估算、红树林信息提取实践技术应用与科研论文写作 

相关文章:

从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖…...

操作系统的奋斗(三)内存管理

第三章 内存管理3.1内存管理概念3.1.1 内存管理的基本原理和要求(1)内存管理的主要功能3.1.2 覆盖和交换(1)覆盖(2)交换3.1.3 连续分配管理方式(1)单一连续分配(2&#x…...

多选多的一种通用处理逻辑

开发的时候,我们经常会涉及元素的多选多,并且还需要对选中的元素进行拖动排序 通用的设计方案如下 游戏资源集合与游戏资源的绑定关系处理(多选多的一种通用处理逻辑) 可能的情况: 1.之前被选中的资源,现…...

Redis 的安装 + SpringBoot 集成 Redis

1.安装 Redis此处的 Redis 安装是针对 Linux 版本的安装, 因为 Redis 官方没有提供 Windows 版本, 只提供了 Linux 版本. 但是我们可以通过Windows 去远程连接 Redis.1.1 使用 yum 安装 Redis使用如下命令, 将 Redis 安装到 Linux 服务器:yum -y install redis1.2 启动 Redis使…...

为什么在容器中 1 号进程挂不上 arthas?

作者:卜比 本文是《容器中的 Java》系列文章之 4/n ,欢迎关注后续连载 😃 。 系列1:JVM 如何获取当前容器的资源限制? 系列2:Java Agent 踩坑之 appendToSystemClassLoaderSearch 问题 系列3:让…...

23种设计模式之策略模式

一、概念 就是将一系列算法封装起来,并使它们之间相互替换。被封装起来的算法具有独立性外部不可改变其特性。 策略模式属于对象行为模式,它通过对算法进行封装,把使用算法的责任和算法的实现分割开来,并委派给不同的对象对这些算…...

不会做UI自动化测试?一起设计框架再实践吧

目的相信做过测试的同学都听说过自动化测试,而UI自动化无论何时对测试来说都是比较吸引人的存在。相较于接口自动化来说它可以最大程度的模拟真实用户的日常操作与特定业务场景的模拟,那么存在即合理,自动化UI测试自然也是广大测试同学职业道…...

数据分析实战项目3:RFM用户分群

目录1、RFM模型介绍2、Excel实际RFM划分案例3、RFM案例3.1 数据加载和基本信息查看3.2 数据预处理和RFM的初始值计算3.3 RFM区间和划分和分值计算3.4 RFM计算结果保存3.4.1 保存到excel3.4.2 保存到数据库3.5 RFM计算结果可视化3.6 结果分析(营销建议)3.…...

消息中间件概述

目录1.为什么学习消息队列2.什么是消息中间件3.消息队列应用场景3.1 应用解耦3.2 异步处理3.3 流量削峰3.4 什么是QPS,PV3.5 什么是PV,UV,PR4. AMQP 和 JMS4.1 AMQP4.2 JMS4.3. AMQP 与 JMS 区别5. 消息队列产品6. RabbitMQ6.1 RabbitMQ简介6.2 RabbitMQ 中的相关概…...

vue和js给后端接口返回的数据(如以json数据为元素的数组)添加新的json字段

文章目录vue和js给后端接口返回的数据(如以json数据为元素的数组)添加新的json字段1. res为后端接口的响应2. 获取后端接口返回的数据3. 向 tableData 添加字段3.1. 向 tableData 中添加一个新json元素( {"time", "2023-02-09"} )3.…...

负载均衡的方式

在业务初期,我们一般会先使用单台服务器对外提供服务。随着业务流量越来越大,单台服务器无论如何优化,无论采用多好的硬件,总会有性能天花板,当单服务器的性能无法满足业务需求时,就需要把多台服务器组成集…...

python(15)--函数设计

前言 函数是可重用的程序代码块。 函数的作用,不仅可以实现代码的复用,还可以保证修改函数的代码时,所有调用该函数的地方都能得到体现。目前我已知函数的作用是:对代码实现了封装、函数调用、传递参数、返回计算结果等。 正文 …...

手把手教你用Python做可视化数据,还能调节动画丝滑度

数据可视化动画还在用Excel做? 现在一个简单的Python包就能分分钟搞定! 而且生成的动画也足够丝滑,效果是酱紫的: 这是一位专攻Python语言的程序员开发的安装包,名叫Pynimate。 目前可以直接通过PyPI安装使用。 使用…...

湖南中创教育PMP项目管理——变更管理

【变更管理​】包括 一、如何理解需求变更 二、如何控制需求变更 三、项目变更管理流程 四、如何应对“奇葩”变更 一、如何理解需求变更: 1、项目中发生变更是正常现象,变更无法回避 2、哪里都可能出现变更,任何人都有权提出变更 3、…...

IC真题 —— 刷题记录(1)

引言 记录一些 我自己刷的 IC行业招聘真题,不是每题记录,只记录一些值得记录的,写下自己的看法。主要是一些数字IC行业题目,偏前端。 1、有一个逐次逼近型 8位A/D 转换器,若时钟频率为250KHz,完成一次转换…...

【C++入门】命名空间,输出输入,缺省参数,函数重载

文章目录命名空间C输入与输出缺省参数函数重载命名空间 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标 识符的名称进行本地化&#xff0…...

cmu 445 poject 2笔记

2022年的任务 https://15445.courses.cs.cmu.edu/fall2022/project2/ checkpoint 1,实现b树,读,写,删 checkpoint 2, 实现b树,迭代器,并发读写删 本文不写代码,只记录遇到的一些思维盲点 checkp…...

梅开二度的 axios 源码阅读,三千字详细分享功能函数,帮助扩展开发思维

前言 第一遍看 axios 源码,更多的是带着日常开发的习惯,时不时产生出点联想。 第二遍再看 axios 源码,目标明确,就是奔着函数来的。 当有了明确清晰的目标,阅读速度上来了,思绪也转的飞快。 按图索骥&a…...

vcs仿真教程

VCS是在linux下面用来进行仿真看波形的工具,类似于windows下面的modelsim以及questasim等工具,以及quartus、vivado仿真的操作。 1.vcs的基本指令 vcs的常见指令后缀 sim常见指令 2.使用vcs的实例 采用的是全加器的官方教程,首先介绍不使用…...

java 自定义json解析注解 复杂json解析 工具类

java 自定义json解析注解 复杂json解析 工具类 目录java 自定义json解析注解 复杂json解析 工具类1.背景2、需求-各式各样的json一、一星难度json【json对象中不分层】二、二星难度json【json对象中出现层级】三、三星难度json【json对象中存在数组】四、四星难度json【json对象…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

电脑桌面太单调,用Python写一个桌面小宠物应用。

下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...

LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考

目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候,显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征(均值、比率、总量)控制抽样误差与非抽样误差 解决的核心问题 在成本约束下,用少量样本准确推断总体特征量化估计结果的可靠性(置…...

第22节 Node.js JXcore 打包

Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本,基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...