当前位置: 首页 > news >正文

Matlab实现Spectral Clustering算法

Spectral Clustering算法是一种基于图论的聚类算法,它可以将数据点按照图结构进行划分,发现复杂和非线性可分的结构。在这篇博客中,我将介绍Spectral Clustering算法的原理和步骤,并给出一个用Matlab实现的代码示例。

目录

一、什么是Spectral Clustering算法

二、Spectral Clustering算法的意义

三、如何实现Spectral Clustering算法

这里是希望和大家一起进步的小高,愿意和读者们热情探讨😊


一、什么是Spectral Clustering算法

Spectral Clustering算法的基本思想是将数据点看作图中的节点,将数据点之间的相似度看作图中的边,然后根据图中节点和边的性质进行划分。具体来说,Spectral Clustering算法涉及以下几个步骤:

  • 构建相似度矩阵:首先,我们需要计算每对数据点之间的相似度,并将其存储在一个对称矩阵S中,其中S(i,j)表示第i个数据点和第j个数据点之间的相似度。相似度可以用不同的方式来定义,例如欧氏距离、高斯核函数、余弦相似度等。
  • 构建拉普拉斯矩阵:其次,我们需要将相似度矩阵转化为一个拉普拉斯矩阵L,它可以反映图中节点之间的连接关系。拉普拉斯矩阵有多种定义方式,其中最常用的是标准化对称拉普拉斯矩阵L = I - D(-1/2)SD(-1/2),其中I是单位矩阵,D是对角矩阵,D(i,i)表示第i个数据点的度数,即S(i,:)的和。
  • 计算特征值和特征向量:接下来,我们需要对拉普拉斯矩阵进行特征值分解,即求解Lx = \lambda x这个特征值问题。我们只关心最小的k个特征值和对应的特征向量,其中k是我们预先指定的聚类个数。这些特征向量可以反映图中节点之间的聚类结构,因为它们可以将数据点投影到一个低维空间中,使得同一个簇内的数据点更加接近,不同簇之间的数据点更加分离。
  • 进行k-means聚类:最后,我们需要对特征向量进行k-means聚类,即将每个数据点表示为一个k维向量,其中每一维是该数据点对应的特征向量的一个分量。然后我们用k-means算法将这些向量划分为k个簇,并将每个数据点分配给距离最近的质心所代表的簇。

二、Spectral Clustering算法的意义

Spectral Clustering算法的意义在于,它可以处理一些传统的基于距离或密度的聚类算法难以处理的数据分布,例如环形、螺旋形、月牙形等。如下图所示,这些数据分布在二维空间中是非线性可分的,也就是说,没有一条直线或曲线可以将它们完美地划分为不同的簇。而Spectral Clustering算法可以通过构建相似度矩阵和拉普拉斯矩阵,将这些数据点映射到一个更高维或更低维的空间中,使得它们在新的空间中变得线性可分,从而可以用k-means算法进行聚类。

Spectral Clustering算法相比其他聚类算法有以下一些优势:

  • 它可以利用不同的相似度度量和核函数来适应不同的数据特征和需求。例如,如果数据点之间的相似度是基于高斯核函数,那么Spectral Clustering算法就相当于在高斯核映射后的特征空间中进行聚类。
  • 它可以通过特征值分解和k-means聚类来实现,计算复杂度相对较低。特别是当数据点的个数很大时,我们可以使用一些近似方法来加速特征值分解的过程,例如随机投影、Nyström方法等。
  • 它可以生成一个谱图,表示数据点之间的相似度关系,方便进行可视化和分析。谱图是一个以数据点为节点,以相似度为边权重的图,它可以反映数据点之间的结构和模式。

三、如何实现Spectral Clustering算法

为了帮助更好地理解Spectral Clustering算法的步骤,编写了一个用Matlab实现的代码示例,并对每一行进行了注释。代码如下:

% 生成一个随机数据集
rng(1); % 设置随机数种子
X = [randn(10,2)+ones(10,2); randn(10,2)-ones(10,2)]; % 生成20个二维数据点% 画出数据点的散点图
figure;
plot(X(:,1),X(:,2),'o'); % 画出数据点
title('Random Data Set'); % 设置标题
xlabel('x1'); % 设置x轴标签
ylabel('x2'); % 设置y轴标签% 构建相似度矩阵
dist_temp = pdist(X); % 计算每对数据点之间的欧氏距离
dist = squareform(dist_temp); % 将距离转化为对称矩阵
S = exp(-dist.^2); % 使用高斯核函数计算相似度% 构建拉普拉斯矩阵
D = diag(sum(S,2)); % 计算度矩阵
L = eye(20) - D^(-1/2)*S*D^(-1/2); % 计算标准化对称拉普拉斯矩阵% 计算特征值和特征向量
[V,D] = eigs(L,2,'smallestabs'); % 计算最小的两个特征值和对应的特征向量% 进行k-means聚类
idx = kmeans(V,2); % 将特征向量划分为两个簇% 画出聚类结果的散点图
figure;
gscatter(X(:,1),X(:,2),idx); % 画出不同颜色的数据点
title('Cluster Result'); % 设置标题
xlabel('x1'); % 设置x轴标签
ylabel('x2'); % 设置y轴标签

这里是希望和大家一起进步的小高,愿意和读者们热情探讨😊

相关文章:

Matlab实现Spectral Clustering算法

Spectral Clustering算法是一种基于图论的聚类算法,它可以将数据点按照图结构进行划分,发现复杂和非线性可分的结构。在这篇博客中,我将介绍Spectral Clustering算法的原理和步骤,并给出一个用Matlab实现的代码示例。 目录 一、…...

Android 测试

工程目录图 1- Espresso 2- uiautomator Espresso 文档UI Automator文档ui-automator 英文文档 请点击下面工程名称,跳转到代码的仓库页面,将工程 下载下来 Demo Code 里有详细的注释 代码:testespresso 参考文献 Android 利用 espre…...

全面解析大语言模型的工作原理

当ChatGPT在去年秋天推出时,在科技行业乃至世界范围内引起了轰动。当时,机器学习研究人员尝试研发了多年的语言大模型(LLM),但普通大众并未十分关注,也没有意识到它们变得多强大。 如今,几乎每个…...

cmake+pybind11打包c++库成python wheel安装包

目录 写在前面准备1、pybind11获取源码编译安装 2、conda demo官方源码修改CMakeLists.txt编译生成安装测试 参考完 写在前面 1、本文内容 有时候我们需要用c代码,供python调用,本文提供将c库封装成python接口的方法,并将库打包成可通过pip安…...

史上最细,接口自动化测试框架-Pytest+Allure+Excel整理(代码)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Allure框架 Allu…...

【计算机视觉中的 GAN 】 - 条件图像合成和 3D 对象生成(2)

一、说明 上文 【计算机视觉中的 GAN 】或多或少是GANs,生成学习和计算机视觉的介绍。我们达到了在 128x128 图像中生成可区分图像特征的程度。但是,如果你真的想了解GAN在计算机视觉方面的进展,你肯定必须深入研究图像到图像的翻译。…...

智安网络|常见的网络安全陷阱:你是否掉入了其中?

在数字化时代,网络安全成为了一个重要的议题。随着我们越来越多地在互联网上进行各种活动,诸如在线银行交易、社交媒体分享和在线购物等,我们的个人信息也更容易受到攻击和滥用。虽然有许多关于网络安全的指导和建议,但仍然有许多…...

亚马逊云科技HPC解决方案,帮助浙江大学实现成本和科研任务的双丰收

浙江大学土壤学科是朱祖祥院士等几代土壤科学家共同创建的A国家重点学科,整体实力雄厚,优势特色明显,总体水平居国内前列。在亚马逊云科技科研创新支持计划(Amazon Web Services Cloud Credits for Research)的多次支持…...

【Docker】Docker中安装MySQL数据库

文章目录 1. 前言2. Docker中安装MySQL服务2.1. 查看可用的MySQL版本2.2. 拉取MySQL镜像2.3. 查看本地镜像2.4. 运行容器2.5. 查看正在运行的容器2.6. 查看容器内部2.7. 授权root远程登录2.8. 在宿主机连接到容器的MySQL2.9. 用Navicat连接容器的MySQL 3. 如果是MySQL8.0可能需…...

Unity的IPostBuildPlayerScriptDLLs:深入解析与实用案例

Unity IPostBuildPlayerScriptDLLs Unity IPostBuildPlayerScriptDLLs是Unity引擎中的一个非常有用的功能,它可以让开发者在构建项目后自定义哪些文件需要被复制到输出目录中。这个功能可以帮助开发者更好地控制项目的构建过程,确保输出目录只包含必要的…...

MySQL数据库服务器安装与配置(步骤简单详细,看完可学会下载MySQL所有版本)

目录 引言 一,5.6.51数据库服务器下载 二,8.1.0最新版数据库服务器下载 三,MySQL客户端下载 引言 个人认为MySQl数据库目前推荐的两个版本系列为5.6.51和8.系列。 至于我们为什么要下载两个版本呢?是因为官方在数据库下载的结构…...

PowerDesigner16.5安装教程

一、什么是PowerDesigner PowerDesigner是Sybase的企业建模和设计解决方案,采用模型驱动方法,将业务与IT结合起来,可帮助部署有效的企业体系架构,并为研发生命周期管理提供强大的分析与设计技术。PowerDesigner独具匠心地将多种标…...

Java反射全面详解

1. 什么是反射? 首先听这个名字就有些疑惑,什么是反射,它能用来干什么呢? Java官方对反射的解释是 "反射允许对封装类的字段,方法和构造函数进行编程式访问"。这里的字段指的就是成员变量,方法…...

助力工业物联网,工业大数据之费用事实指标分析及实现【二十四】

文章目录 1:费用事实指标分析及实现2:差旅事实指标分析及实现3:网点物料事实指标分析及实现 1:费用事实指标分析及实现 目标:实现DWB层费用报销事实指标表的构建 路径 step1:目标需求step2:数据…...

Istio 安全 mTLS认证 PeerAuthentication

这里定义了访问www.ck8s.com可以使用http也可以使用https访问,两种方式都可以访问。 那么是否可以强制使用mtls方式去访问? mTLS认证 PeerAuthentication PeerAuthentication的主要作用是别人在和网格里的pod进行通信的时候,是否要求mTLS mTL…...

【MySQL】数据库基本使用

文章目录 一、数据库介绍二、数据库使用2.1 登录MySQL2.2 基本使用2.2.1 显示当前 MySQL 实例中所有的数据库列表2.2.2 创建数据库2.2.3 创建数据库表2.2.4 在表中插入数据2.2.5 在表中查询数据 三、服务器、数据库、表之间的关系四、SQL语句分类五、存储引擎 一、数据库介绍 …...

计算shell脚本执行的时间

我们在使用shell脚本进行一些批量活动的时候,在有的场景下会需要知道脚本执行用了多长的时间,一谈到这个话题,我们一般的想法就是记录时间再开始阶段,执行完成后再记录时间,然后求时间差,这样是可以的&…...

无网络环境下,如何部署Docker镜像

无网络环境下,如何部署Docker镜像 什么是Docker镜像 Docker镜像是Docker容器的基础构建块。它是一个轻量级、独立且可执行的软件包,其中包含了运行应用程序所需的所有文件系统、代码、依赖关系和配置。 Docker镜像由一系列只读层(Layers&a…...

瑞吉外卖项目----(2)缓存优化

1 缓存优化 1.0 问题说明 1.1 环境搭建 将项目推送到远程仓库里,教程在git 提交远程仓库前建议取消代码检查 创建新的分支v1.0(用于实现缓存优化)并推送到远程仓库 1.1.1 maven坐标 导入spring-data-redis的maven坐标: &l…...

c++ http url encode decode

在C++中,可以使用以下方法对URL进行编码和解码: URL编码:#include <iostream> #include <string> #include <sstream> #include <iomanip>std::string urlEncode...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...