当前位置: 首页 > news >正文

【机器学习】Gradient Descent

Gradient Descent for Linear Regression

    • 1、梯度下降
    • 2、梯度下降算法的实现
      • (1) 计算梯度
      • (2) 梯度下降
      • (3) 梯度下降的cost与迭代次数
      • (4) 预测
    • 3、绘图
    • 4、学习率

首先导入所需的库:

import math, copy
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
from lab_utils_uni import plt_house_x, plt_contour_wgrad, plt_divergence, plt_gradients

1、梯度下降

使用线性模型来预测 f w , b ( x ( i ) ) f_{w,b}(x^{(i)}) fw,b(x(i)):
f w , b ( x ( i ) ) = w x ( i ) + b (1) f_{w,b}(x^{(i)}) = wx^{(i)} + b \tag{1} fw,b(x(i))=wx(i)+b(1)
在线性回归中, 利用训练数据来拟合参数 w w w, b b b,通过最小化预测值 f w , b ( x ( i ) ) f_{w,b}(x^{(i)}) fw,b(x(i)) 与实际数据 y ( i ) y^{(i)} y(i) 之间的误差来实现。 这种衡量为 cost, 即 J ( w , b ) J(w,b) J(w,b)。 在训练中,可以衡量所有样例 x ( i ) , y ( i ) x^{(i)},y^{(i)} x(i),y(i)的cost:
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (2) J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2\tag{2} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2(2)

梯度下降描述为:

repeat until convergence: { w = w − α ∂ J ( w , b ) ∂ w b = b − α ∂ J ( w , b ) ∂ b } \begin{align*} \text{repeat}&\text{ until convergence:} \; \lbrace \newline \; w &= w - \alpha \frac{\partial J(w,b)}{\partial w} \tag{3} \; \newline b &= b - \alpha \frac{\partial J(w,b)}{\partial b} \newline \rbrace \end{align*} repeatwb} until convergence:{=wαwJ(w,b)=bαbJ(w,b)(3)

其中,参数 w w w, b b b 同时更新。

梯度定义为:
∂ J ( w , b ) ∂ w = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) x ( i ) ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) \begin{align} \frac{\partial J(w,b)}{\partial w} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)} \tag{4}\\ \frac{\partial J(w,b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)}) \tag{5}\\ \end{align} wJ(w,b)bJ(w,b)=m1i=0m1(fw,b(x(i))y(i))x(i)=m1i=0m1(fw,b(x(i))y(i))(4)(5)

这里的 同时 意味着在更新任何一个参数之前,同时计算所有参数的偏导数。

2、梯度下降算法的实现

包含一个特征的梯度下降算法需要三个函数来实现:

  • compute_gradient 执行上面的等式(4)和(5)
  • compute_cost 执行上面的等式(2)
  • gradient_descent:利用 compute_gradientcompute_cost

其中,包含偏导数的 Python 变量的命名遵循以下模式: ∂ J ( w , b ) ∂ b \frac{\partial J(w,b)}{\partial b} bJ(w,b)dj_db.

(1) 计算梯度

compute_gradient 实现上面的 (4) 和 (5) ,返回 ∂ J ( w , b ) ∂ w \frac{\partial J(w,b)}{\partial w} wJ(w,b), ∂ J ( w , b ) ∂ b \frac{\partial J(w,b)}{\partial b} bJ(w,b).

def compute_gradient(x, y, w, b): """Computes the gradient for linear regression Args:x (ndarray (m,)): Data, m examples y (ndarray (m,)): target valuesw,b (scalar)    : model parameters  Returnsdj_dw (scalar): The gradient of the cost w.r.t. the parameters wdj_db (scalar): The gradient of the cost w.r.t. the parameter b     """# Number of training examplesm = x.shape[0]    dj_dw = 0dj_db = 0for i in range(m):  f_wb = w * x[i] + b dj_dw_i = (f_wb - y[i]) * x[i] dj_db_i = f_wb - y[i] dj_db += dj_db_idj_dw += dj_dw_i dj_dw = dj_dw / m dj_db = dj_db / m return dj_dw, dj_db

使用 compute_gradient 函数来找到并绘制cost函数相对于参数 w 0 w_0 w0 的一些偏导数。

plt_gradients(x_train,y_train, compute_cost, compute_gradient)
plt.show()

在这里插入图片描述

上面的左图显示了 ∂ J ( w , b ) ∂ w \frac{\partial J(w,b)}{\partial w} wJ(w,b),即在三个点处关于 w w w 的 cost 曲线的斜率。在图的右侧,导数为正,而在左侧为负。由于“碗形”的形状,导数将始终引导梯度下降朝着梯度为零的最低点前进。

左图中的 b b b 被固定为 100。梯度下降将同时利用 ∂ J ( w , b ) ∂ w \frac{\partial J(w,b)}{\partial w} wJ(w,b) ∂ J ( w , b ) ∂ b \frac{\partial J(w,b)}{\partial b} bJ(w,b) 来更新参数。右侧的“矢量图”提供了查看两个参数梯度的方式。箭头的大小反映了该点梯度的大小。箭头的方向和斜率反映了该点处 ∂ J ( w , b ) ∂ w \frac{\partial J(w,b)}{\partial w} wJ(w,b) ∂ J ( w , b ) ∂ b \frac{\partial J(w,b)}{\partial b} bJ(w,b) 的比例。梯度指向远离最小值的方向。将缩放后的梯度从当前的 w w w b b b 值中减去,这将使参数朝着降低cost的方向移动。

(2) 梯度下降

现在可以计算梯度了,梯度下降方法(如上面公式(3)所描述)可以在下面的 gradient_descent 函数中实现。使用这个函数在训练数据上找到参数 w w w b b b 的最优值。

def gradient_descent(x, y, w_in, b_in, alpha, num_iters, cost_function, gradient_function): """Performs gradient descent to fit w,b. Updates w,b by taking num_iters gradient steps with learning rate alphaArgs:x (ndarray (m,))  : Data, m examples y (ndarray (m,))  : target valuesw_in,b_in (scalar): initial values of model parameters  alpha (float):     Learning ratenum_iters (int):   number of iterations to run gradient descentcost_function:     function to call to produce costgradient_function: function to call to produce gradientReturns:w (scalar): Updated value of parameter after running gradient descentb (scalar): Updated value of parameter after running gradient descentJ_history (List): History of cost valuesp_history (list): History of parameters [w,b] """w = copy.deepcopy(w_in) # avoid modifying global w_in# An array to store cost J and w's at each iteration primarily for graphing laterJ_history = []p_history = []b = b_inw = w_infor i in range(num_iters):# Calculate the gradient and update the parameters using gradient_functiondj_dw, dj_db = gradient_function(x, y, w , b)     # Update Parameters using equation (3) aboveb = b - alpha * dj_db                            w = w - alpha * dj_dw                            # Save cost J at each iterationif i<100000:      # prevent resource exhaustion J_history.append( cost_function(x, y, w , b))p_history.append([w,b])# Print cost every at intervals 10 times or as many iterations if < 10if i% math.ceil(num_iters/10) == 0:print(f"Iteration {i:4}: Cost {J_history[-1]:0.2e} ",f"dj_dw: {dj_dw: 0.3e}, dj_db: {dj_db: 0.3e}  ",f"w: {w: 0.3e}, b:{b: 0.5e}")return w, b, J_history, p_history #return w and J,w history for graphing
# initialize parameters
w_init = 0
b_init = 0
# some gradient descent settings
iterations = 10000
tmp_alpha = 1.0e-2
# run gradient descent
w_final, b_final, J_hist, p_hist = gradient_descent(x_train ,y_train, w_init, b_init, tmp_alpha, iterations, compute_cost, compute_gradient)
print(f"(w,b) found by gradient descent: ({w_final:8.4f},{b_final:8.4f})")

在这里插入图片描述

从上面打印的梯度下降过程可以看出,偏导数 dj_dw和dj_db逐渐变小,开始变得很快,然后变慢。当过程接近“碗底”时,由于该点的导数值较小,进度会变慢。

(3) 梯度下降的cost与迭代次数

cost 与迭代次数的图是梯度下降中进展的一个有用指标。在成功的运行中,cost 应该始终降低。cost的变化在最初阶段非常迅速,因此将初始阶段的下降与最后阶段的下降绘制在不同的比例尺上是很有用的。在下面的图中,请注意坐标轴上cost的刻度和迭代步骤。

# plot cost versus iteration  
fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True, figsize=(12,4))
ax1.plot(J_hist[:100])
ax2.plot(1000 + np.arange(len(J_hist[1000:])), J_hist[1000:])
ax1.set_title("Cost vs. iteration(start)");  ax2.set_title("Cost vs. iteration (end)")
ax1.set_ylabel('Cost')            ;  ax2.set_ylabel('Cost') 
ax1.set_xlabel('iteration step')  ;  ax2.set_xlabel('iteration step') 
plt.show()

在这里插入图片描述

(4) 预测

现在已经找到了参数 w w w b b b 的最优值,可以使用这个模型根据学到的参数来预测房屋价格。如预期的那样,对于相同的房屋,预测值与训练值几乎相同。此外,对于没有在预测中的值,它与预期值是一致的。

print(f"1000 sqft house prediction {w_final*1.0 + b_final:0.1f} Thousand dollars")
print(f"1200 sqft house prediction {w_final*1.2 + b_final:0.1f} Thousand dollars")
print(f"2000 sqft house prediction {w_final*2.0 + b_final:0.1f} Thousand dollars")

在这里插入图片描述

3、绘图

通过在cost函数的等高线图上绘制cost随迭代次数的变化来展示梯度下降执行过程。

fig, ax = plt.subplots(1,1, figsize=(12, 6))
plt_contour_wgrad(x_train, y_train, p_hist, ax)

在这里插入图片描述
在上面的等高线图中,展示了 c o s t ( w , b ) cost(w,b) cost(w,b) 在一系列 w w w b b b 值上的变化。cost 水平由环状图表示。用红色箭头叠加在图中,表示梯度下降的路径。这条路径向着目标稳步(单调地)前进,最初的步长比接近目标时的步长要大得多。

将梯度下降的最后步进行放大,随着梯度接近零,步之间的距离会缩小。

fig, ax = plt.subplots(1,1, figsize=(12, 4))
plt_contour_wgrad(x_train, y_train, p_hist, ax, w_range=[180, 220, 0.5], b_range=[80, 120, 0.5], contours=[1,5,10,20],resolution=0.5)

在这里插入图片描述

4、学习率

α \alpha α 越大,梯度下降就会更快地收敛到一个解。但是,如果 α \alpha α 太大,梯度下降可能会发散。上面的例子展示了一个很好地收敛的解。如果增加 α \alpha α 的值,看看会发生什么?

# initialize parameters
w_init = 0
b_init = 0
# set alpha to a large value
iterations = 10
tmp_alpha = 8.0e-1
# run gradient descent
w_final, b_final, J_hist, p_hist = gradient_descent(x_train ,y_train, w_init, b_init, tmp_alpha, iterations, compute_cost, compute_gradient)

在这里插入图片描述

在上面的情况下, w w w b b b 在正值和负值之间来回跳动,其绝对值在每次迭代中增加。此外,每次迭代 ∂ J ( w , b ) ∂ w \frac{\partial J(w,b)}{\partial w} wJ(w,b) 都会改变符号,并且cost不是减小而是增加。这明显表明学习率过大,导致解发散。通过图形来可视化这个情况。

plt_divergence(p_hist, J_hist,x_train, y_train)
plt.show()

在这里插入图片描述
上面的左图显示了梯度下降的前几步中 w w w 的变化情况。 w w w 在正值和负值之间振荡,并且cost迅速增长。梯度下降同时对 w w w b b b 进行操作,因此需要右边的三维图来得到完整的图像。

相关文章:

【机器学习】Gradient Descent

Gradient Descent for Linear Regression 1、梯度下降2、梯度下降算法的实现(1) 计算梯度(2) 梯度下降(3) 梯度下降的cost与迭代次数(4) 预测 3、绘图4、学习率 首先导入所需的库&#xff1a; import math, copy import numpy as np import matplotlib.pyplot as plt plt.styl…...

直播读弹幕机器人:直播弹幕采集+文字转语音(附完整代码)

目录 前言代码实现请求数据解析数据文字转语音完整代码 高级点的tk界面版 前言 直播读弹幕机器人是指能够实时读取直播平台上观众发送的弹幕&#xff0c;并将其转化为语音进行播放的机器人。这种机器人通常会使用文字转语音技术&#xff0c;将接收到的弹幕文本转为语音&#x…...

K3s vs K8s:轻量级对决 - 探索替代方案

在当今云原生应用的领域中&#xff0c;Kubernetes&#xff08;简称K8s&#xff09;已经成为了无可争议的领导者。然而&#xff0c;随着应用规模的不断增长&#xff0c;一些开发者和运维人员开始感受到了K8s的重量级特性所带来的挑战。为了解决这一问题&#xff0c;一个名为K3s的…...

dev控件gridControl,gridview中添加合计

需求&#xff1a;在合并结账查询中&#xff0c;双击每一条结账出现这次结账对应的结算明细&#xff1a; 弹出的页面包括&#xff1a;结算日期&#xff0c;ID&#xff0c;姓名&#xff0c;费别&#xff0c;预交金收入&#xff0c;结算金额&#xff0c;收据号&#xff0c;合计&a…...

SpringBoot基础认识

创建SpringBoot模块 首先需要引设置maven并引用maven环境 1.打开项目结构&#xff0c;new module&#xff0c;选择Spring Initializr&#xff0c;URL选默认&#xff1a; group填写分组如com.kdy &#xff0c; Artifact起个模块名如springboot_quickstart&#xff0c;Type选择M…...

二十三种设计模式第十九篇--命令模式

命令模式是一种行为设计模式&#xff0c;它将请求封装成一个独立的对象&#xff0c;从而允许您以参数化的方式将客户端代码与具体实现解耦。在命令模式中&#xff0c;命令对象充当调用者和接收者之间的中介。这使您能够根据需要将请求排队、记录请求日志、撤销操作等。 命令模…...

STM32基础入门学习笔记:基础知识和理论 开发环境建立

文件目录&#xff1a; 一&#xff1a;基础知识和理论 1.ARM简介 2.STM32简介 3.STM32命名规范 4.STM32内部功能* 5.STM32接口定义 二&#xff1a;开发环境建立 1.开发板简介 2.ISP程序下载 3.最小系统电路 4.KEIL的安装 5.工程简介与调试流程 6.固件库的安装 7.编…...

Qt应用开发(基础篇)——数值微调输入框QAbstractSpinBox、QSpinBox、QDoubleSpinBox

目录 一、前言 二、QAbstractSpinBox类 1、accelerated 2、acceptableInput 3、alignment 4、buttonSymbols 5、correctionMode 6、frame 7、keyboardTracking 8、readOnly 9、showGroupSeparator 10、specialValueText 11、text 12、wrapping 13、信号 二、Q…...

html | 无js二级菜单

1. 效果图 2. 代码 <meta charset"utf-8"><style> .hiddentitle{display:none;}nav ul{list-style-type: none;background-color: #001f3f;overflow:hidden; /* 父标签加这个&#xff0c;防止有浮动子元素时&#xff0c;该标签失去高度*/margin: 0;padd…...

appium的基本使用

appium的基本使用 一、appium的基本使用appium环境安装1、安装Android SDK 2、安装Appium3、安装手机模拟器4、Pycharm安装 appium-python-alicent5、连接appium和模拟器6、Python代码调用appium软件&#xff0c;appium软件在通过adb命令调用android操作系统&#xff08;模拟器…...

Dockerfile构建nginx镜像(编译安装)

Dockerfile构建nginx镜像 1、建立工作目录 [rootdocker ~]# mkdir nginx [rootdocker ~]# cd nginx/ 2、编写Dockerfile文件 [rootdocker nginx]# vim run.sh [rootdocker nginx]# vim Dockerfile #基于的基础镜像 FROM centos:7#镜像作者信息 MAINTAINER Crushlinux <…...

手机屏幕视窗机器视觉定位软硬件-康耐德

【检测目的】 手机屏幕视窗视觉定位 【效果图片】 【安装示意图】 【硬件配置】...

Databend 开源周报第 104 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 从 Kafka 载入数…...

用于医学图像分类的双引导的扩散网络

文章目录 DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification摘要本文方法实验结果 DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification 摘要 近年来&#xff0c;扩散概率模型在生成图像建模中表现出了显著的性能&#xf…...

8.2day03 Redis入门+解决员工模块

概述 在我们日常的Java Web开发中&#xff0c;无不都是使用数据库来进行数据的存储&#xff0c;由于一般的系统任务中通常不会存在高并发的情况&#xff0c;所以这样看起来并没有什么问题&#xff0c;可是一旦涉及大数据量的需求&#xff0c;比如一些商品抢购的情景&#xff0…...

通过案例实战详解elasticsearch自定义打分function_score的使用

前言 elasticsearch给我们提供了很强大的搜索功能&#xff0c;但是有时候仅仅只用相关度打分是不够的&#xff0c;所以elasticsearch给我们提供了自定义打分函数function_score&#xff0c;本文结合简单案例详解function_score的使用方法&#xff0c;关于function-score-query…...

SpringBoot第28讲:SpringBoot集成MySQL - MyBatis-Plus方式

SpringBoot第28讲&#xff1a;SpringBoot集成MySQL - MyBatis-Plus方式 本文是SpringBoot第28讲&#xff0c;MyBatis-Plus&#xff08;简称 MP&#xff09;是一个 MyBatis的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。MyB…...

AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解

本文使用工具&#xff0c;作者:秋葉aaaki 免责声明: 工具免费提供 无任何盈利目的 大家好&#xff0c;我是风雨无阻。 今天为大家带来的是 AI 绘画Stable Diffusion 研究&#xff08;三&#xff09;sd模型种类介绍及安装使用详解。 目前&#xff0c;AI 绘画Stable Diffusion的…...

Docker 命令没有提示信息

问题描述 提示&#xff1a;这里描述项目中遇到的问题&#xff1a; linux安装docker后发现使用docker命令没有提示功能&#xff0c;使用 Tab 键的时候只是提示已有的文件 解决方案&#xff1a; 提示&#xff1a;这里填写该问题的具体解决方案&#xff1a; Bash命令补全 Docke…...

springboot第33集:nacos图

./startup.sh -m standalone Nacos是一个内部微服务组件&#xff0c;需要在可信的内部网络中运行&#xff0c;不可暴露在公网环境&#xff0c;防止带来安全风险。Nacos提供简单的鉴权实现&#xff0c;为防止业务错用的弱鉴权体系&#xff0c;不是防止恶意攻击的强鉴权体系。 鉴…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...